Zhisheng Zhao, Tongrui Li, Peng Li, Xueliang Wu, Jianghao Yao, Ziyuan Chen, Yajun Yan, Shengtao Cui, Zhe Sun, Yichen Yang, Zhicheng Jiang, Zhengtai Liu, Alex Louat, Timur Kim, Cephise Cacho, Aifeng Wang, Yilin Wang, Dawei Shen, Juan Jiang, Donglai Feng
{"title":"kagome金属FeGe中一种新电荷序的光发射证据","authors":"Zhisheng Zhao, Tongrui Li, Peng Li, Xueliang Wu, Jianghao Yao, Ziyuan Chen, Yajun Yan, Shengtao Cui, Zhe Sun, Yichen Yang, Zhicheng Jiang, Zhengtai Liu, Alex Louat, Timur Kim, Cephise Cacho, Aifeng Wang, Yilin Wang, Dawei Shen, Juan Jiang, Donglai Feng","doi":"10.1007/s11433-024-2636-9","DOIUrl":null,"url":null,"abstract":"<div><p>The kagome metal FeGe provides a rich platform for understanding the mechanisms behind competing orders, as it exhibits charge order (CO) emerging deep within the antiferromagnetic phase. To investigate the intrinsic origin of this behavior, we examine the evolution of the low-energy electronic structure across the phase transition in annealed FeGe samples using angle-resolved photoemission spectroscopy. We find no evidence supporting a conventional nesting mechanism, such as Fermi surface nesting or van Hove singularities. However, we observe two notable changes in the band structure: an electron-like band around the <i>K</i> point and another around the <i>A</i> point, both shifting upward in energy when CO forms. These findings are consistent with our density-functional theory calculations, which suggest that the charge order in FeGe is primarily driven by magnetic energy savings due to a lattice distortion involving Ge1-dimerization. Our results provide photoemission evidence supporting this novel mechanism for CO formation in FeGe, in contrast to the conventional nesting-driven mechanisms.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 6","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoemission evidence of a novel charge order in kagome metal FeGe\",\"authors\":\"Zhisheng Zhao, Tongrui Li, Peng Li, Xueliang Wu, Jianghao Yao, Ziyuan Chen, Yajun Yan, Shengtao Cui, Zhe Sun, Yichen Yang, Zhicheng Jiang, Zhengtai Liu, Alex Louat, Timur Kim, Cephise Cacho, Aifeng Wang, Yilin Wang, Dawei Shen, Juan Jiang, Donglai Feng\",\"doi\":\"10.1007/s11433-024-2636-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The kagome metal FeGe provides a rich platform for understanding the mechanisms behind competing orders, as it exhibits charge order (CO) emerging deep within the antiferromagnetic phase. To investigate the intrinsic origin of this behavior, we examine the evolution of the low-energy electronic structure across the phase transition in annealed FeGe samples using angle-resolved photoemission spectroscopy. We find no evidence supporting a conventional nesting mechanism, such as Fermi surface nesting or van Hove singularities. However, we observe two notable changes in the band structure: an electron-like band around the <i>K</i> point and another around the <i>A</i> point, both shifting upward in energy when CO forms. These findings are consistent with our density-functional theory calculations, which suggest that the charge order in FeGe is primarily driven by magnetic energy savings due to a lattice distortion involving Ge1-dimerization. Our results provide photoemission evidence supporting this novel mechanism for CO formation in FeGe, in contrast to the conventional nesting-driven mechanisms.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"68 6\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-024-2636-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2636-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Photoemission evidence of a novel charge order in kagome metal FeGe
The kagome metal FeGe provides a rich platform for understanding the mechanisms behind competing orders, as it exhibits charge order (CO) emerging deep within the antiferromagnetic phase. To investigate the intrinsic origin of this behavior, we examine the evolution of the low-energy electronic structure across the phase transition in annealed FeGe samples using angle-resolved photoemission spectroscopy. We find no evidence supporting a conventional nesting mechanism, such as Fermi surface nesting or van Hove singularities. However, we observe two notable changes in the band structure: an electron-like band around the K point and another around the A point, both shifting upward in energy when CO forms. These findings are consistent with our density-functional theory calculations, which suggest that the charge order in FeGe is primarily driven by magnetic energy savings due to a lattice distortion involving Ge1-dimerization. Our results provide photoemission evidence supporting this novel mechanism for CO formation in FeGe, in contrast to the conventional nesting-driven mechanisms.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.