纳米颗粒尺寸对太阳能热系统中银纳米流体稳定性和效率的影响

IF 0.9 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY
P. Sivaraman, R. Dhairiyasamy, D. Varshney, S. Singh
{"title":"纳米颗粒尺寸对太阳能热系统中银纳米流体稳定性和效率的影响","authors":"P. Sivaraman,&nbsp;R. Dhairiyasamy,&nbsp;D. Varshney,&nbsp;S. Singh","doi":"10.1134/S1070363225600055","DOIUrl":null,"url":null,"abstract":"<p>Silver nanofluids have emerged as promising candidates for advanced thermal and optical applications due to their excellent thermal conductivity and tunable optical properties. However, the influence of nanoparticle size on these properties remains inadequately explored. The objective is to determine the optimal nanoparticle size for enhanced thermal conductivity (TC), heat transfer coefficient (HTC), and optical absorption. Nanofluids were prepared and tested under controlled conditions using a transient hot-wire apparatus for TC and a closed-loop system for HTC. Results showed that 30 nm nanoparticles (nps) exhibited the highest TC (0.75 W/mK) and HTC (420 W/m<sup>2</sup> K), outperforming larger particles by 15 and 10%, respectively. Conversely, 50 nm nanoparticles demonstrated superior optical absorption efficiency due to red-shifted SPR peaks. The study underscores the importance of size optimization for specific applications and highlights RSM as a powerful tool for predicting optimal conditions. These findings pave the way for the tailored design of nanofluids in energy systems, with potential future research extending to hybrid nanofluids and advanced thermal systems.</p>","PeriodicalId":761,"journal":{"name":"Russian Journal of General Chemistry","volume":"95 3","pages":"722 - 731"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Nanoparticle Size on the Stability and Efficiency of Silver Nanofluids in Solar Thermal Systems\",\"authors\":\"P. Sivaraman,&nbsp;R. Dhairiyasamy,&nbsp;D. Varshney,&nbsp;S. Singh\",\"doi\":\"10.1134/S1070363225600055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silver nanofluids have emerged as promising candidates for advanced thermal and optical applications due to their excellent thermal conductivity and tunable optical properties. However, the influence of nanoparticle size on these properties remains inadequately explored. The objective is to determine the optimal nanoparticle size for enhanced thermal conductivity (TC), heat transfer coefficient (HTC), and optical absorption. Nanofluids were prepared and tested under controlled conditions using a transient hot-wire apparatus for TC and a closed-loop system for HTC. Results showed that 30 nm nanoparticles (nps) exhibited the highest TC (0.75 W/mK) and HTC (420 W/m<sup>2</sup> K), outperforming larger particles by 15 and 10%, respectively. Conversely, 50 nm nanoparticles demonstrated superior optical absorption efficiency due to red-shifted SPR peaks. The study underscores the importance of size optimization for specific applications and highlights RSM as a powerful tool for predicting optimal conditions. These findings pave the way for the tailored design of nanofluids in energy systems, with potential future research extending to hybrid nanofluids and advanced thermal systems.</p>\",\"PeriodicalId\":761,\"journal\":{\"name\":\"Russian Journal of General Chemistry\",\"volume\":\"95 3\",\"pages\":\"722 - 731\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of General Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1070363225600055\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of General Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1070363225600055","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

银纳米流体由于其优异的导热性和可调的光学特性,已成为先进热学和光学应用的有希望的候选者。然而,纳米颗粒尺寸对这些性能的影响尚未得到充分的探讨。目的是确定增强导热系数(TC)、传热系数(HTC)和光吸收的最佳纳米颗粒尺寸。纳米流体的制备和测试在受控条件下使用瞬态热线装置的TC和闭环系统的HTC。结果表明,30 nm纳米颗粒(nps)具有最高的TC (0.75 W/mK)和HTC (420 W/m2 K),分别比较大颗粒高15%和10%。相反,由于SPR峰的红移,50 nm纳米颗粒表现出优异的光吸收效率。该研究强调了特定应用中尺寸优化的重要性,并强调了RSM作为预测最佳条件的强大工具。这些发现为能源系统中纳米流体的定制设计铺平了道路,未来的研究可能会扩展到混合纳米流体和先进的热系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Nanoparticle Size on the Stability and Efficiency of Silver Nanofluids in Solar Thermal Systems

Effect of Nanoparticle Size on the Stability and Efficiency of Silver Nanofluids in Solar Thermal Systems

Silver nanofluids have emerged as promising candidates for advanced thermal and optical applications due to their excellent thermal conductivity and tunable optical properties. However, the influence of nanoparticle size on these properties remains inadequately explored. The objective is to determine the optimal nanoparticle size for enhanced thermal conductivity (TC), heat transfer coefficient (HTC), and optical absorption. Nanofluids were prepared and tested under controlled conditions using a transient hot-wire apparatus for TC and a closed-loop system for HTC. Results showed that 30 nm nanoparticles (nps) exhibited the highest TC (0.75 W/mK) and HTC (420 W/m2 K), outperforming larger particles by 15 and 10%, respectively. Conversely, 50 nm nanoparticles demonstrated superior optical absorption efficiency due to red-shifted SPR peaks. The study underscores the importance of size optimization for specific applications and highlights RSM as a powerful tool for predicting optimal conditions. These findings pave the way for the tailored design of nanofluids in energy systems, with potential future research extending to hybrid nanofluids and advanced thermal systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
22.20%
发文量
252
审稿时长
2-4 weeks
期刊介绍: Russian Journal of General Chemistry is a journal that covers many problems that are of general interest to the whole community of chemists. The journal is the successor to Russia’s first chemical journal, Zhurnal Russkogo Khimicheskogo Obshchestva (Journal of the Russian Chemical Society ) founded in 1869 to cover all aspects of chemistry. Now the journal is focused on the interdisciplinary areas of chemistry (organometallics, organometalloids, organoinorganic complexes, mechanochemistry, nanochemistry, etc.), new achievements and long-term results in the field. The journal publishes reviews, current scientific papers, letters to the editor, and discussion papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信