应变和温度对未填充天然橡胶应力松弛的影响

IF 1.2 4区 化学 Q4 POLYMER SCIENCE
Muhammad Umar Zulkefli, Julia Gough
{"title":"应变和温度对未填充天然橡胶应力松弛的影响","authors":"Muhammad Umar Zulkefli,&nbsp;Julia Gough","doi":"10.1007/s42464-024-00284-0","DOIUrl":null,"url":null,"abstract":"<div><p>Many rubber-based components are required to withstand long-term stress or strain without developing excessive stress relaxation or creep. A model was implemented for simple shear which used the Boltzmann superposition principle (BSP) to predict the stress relaxation following changes in strain and the William–Landel–Ferry transformation to allow for changes in temperature. Stress relaxation was modelled as linear with the logarithmic of time with a Prony series deduced from two independent parameters. By means of small-time increments, the model can be used to model the stress relaxation under arbitrary strain and temperature histories. Stress relaxation measurements were carried out for two types of deformations: simple shear and compression. The samples were made of an unfilled natural rubber and tested under varying strains and temperatures and the results compared to the predictions of the model. The agreement was generally good, and the discrepancies are discussed. The model parameters were also used within the linear viscoelastic model in the commercial finite element analysis package ABAQUS, which enables modelling in deformation modes other than simple shear.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"28 1","pages":"87 - 103"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of strains and temperatures on the stress relaxation of unfilled natural rubber\",\"authors\":\"Muhammad Umar Zulkefli,&nbsp;Julia Gough\",\"doi\":\"10.1007/s42464-024-00284-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many rubber-based components are required to withstand long-term stress or strain without developing excessive stress relaxation or creep. A model was implemented for simple shear which used the Boltzmann superposition principle (BSP) to predict the stress relaxation following changes in strain and the William–Landel–Ferry transformation to allow for changes in temperature. Stress relaxation was modelled as linear with the logarithmic of time with a Prony series deduced from two independent parameters. By means of small-time increments, the model can be used to model the stress relaxation under arbitrary strain and temperature histories. Stress relaxation measurements were carried out for two types of deformations: simple shear and compression. The samples were made of an unfilled natural rubber and tested under varying strains and temperatures and the results compared to the predictions of the model. The agreement was generally good, and the discrepancies are discussed. The model parameters were also used within the linear viscoelastic model in the commercial finite element analysis package ABAQUS, which enables modelling in deformation modes other than simple shear.</p></div>\",\"PeriodicalId\":662,\"journal\":{\"name\":\"Journal of Rubber Research\",\"volume\":\"28 1\",\"pages\":\"87 - 103\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rubber Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42464-024-00284-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rubber Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s42464-024-00284-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

许多橡胶基部件需要承受长期的应力或应变,而不会产生过度的应力松弛或蠕变。利用Boltzmann叠加原理(BSP)预测应变变化后的应力松弛,并利用William-Landel-Ferry变换考虑温度变化,建立了简单剪切模型。应力松弛模型与时间的对数呈线性关系,由两个独立参数推导出一个proony级数。通过小时间增量,该模型可用于模拟任意应变和温度历史下的应力松弛。应力松弛测量进行了两种类型的变形:简单的剪切和压缩。样品由未填充的天然橡胶制成,在不同的应变和温度下进行测试,并将结果与模型的预测结果进行比较。协议总体上是好的,对差异进行了讨论。模型参数也被用于商业有限元分析软件包ABAQUS的线性粘弹性模型中,这使得除了简单的剪切之外,还可以在变形模式下建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of strains and temperatures on the stress relaxation of unfilled natural rubber

Effect of strains and temperatures on the stress relaxation of unfilled natural rubber

Many rubber-based components are required to withstand long-term stress or strain without developing excessive stress relaxation or creep. A model was implemented for simple shear which used the Boltzmann superposition principle (BSP) to predict the stress relaxation following changes in strain and the William–Landel–Ferry transformation to allow for changes in temperature. Stress relaxation was modelled as linear with the logarithmic of time with a Prony series deduced from two independent parameters. By means of small-time increments, the model can be used to model the stress relaxation under arbitrary strain and temperature histories. Stress relaxation measurements were carried out for two types of deformations: simple shear and compression. The samples were made of an unfilled natural rubber and tested under varying strains and temperatures and the results compared to the predictions of the model. The agreement was generally good, and the discrepancies are discussed. The model parameters were also used within the linear viscoelastic model in the commercial finite element analysis package ABAQUS, which enables modelling in deformation modes other than simple shear.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Rubber Research
Journal of Rubber Research 化学-高分子科学
自引率
15.40%
发文量
46
审稿时长
3 months
期刊介绍: The Journal of Rubber Research is devoted to both natural and synthetic rubbers, as well as to related disciplines. The scope of the journal encompasses all aspects of rubber from the core disciplines of biology, physics and chemistry, as well as economics. As a specialised field, rubber science includes within its niche a vast potential of innovative and value-added research areas yet to be explored. This peer reviewed publication focuses on the results of active experimental research and authoritative reviews on all aspects of rubber science. The Journal of Rubber Research welcomes research on: the upstream, including crop management, crop improvement and protection, and biotechnology; the midstream, including processing and effluent management; the downstream, including rubber engineering and product design, advanced rubber technology, latex science and technology, and chemistry and materials exploratory; economics, including the economics of rubber production, consumption, and market analysis. The Journal of Rubber Research serves to build a collective knowledge base while communicating information and validating the quality of research within the discipline, and bringing together work from experts in rubber science and related disciplines. Scientists in both academia and industry involved in researching and working with all aspects of rubber will find this journal to be both source of information and a gateway for their own publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信