基于深度网络引导生成的医学图像无损加密

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Lin Fan;Meng Li;Zhenting Hu;Yuan Hong;Dexing Kong
{"title":"基于深度网络引导生成的医学图像无损加密","authors":"Lin Fan;Meng Li;Zhenting Hu;Yuan Hong;Dexing Kong","doi":"10.1109/LSP.2025.3552528","DOIUrl":null,"url":null,"abstract":"Ensuring the security and integrity of medical images is crucial for telemedicine. Recently, deep learning-based image encryption techniques have significantly improved data transmission security. However, the unpredictability of complex models may lead to damage during image reconstruction, thereby negatively impacting medical diagnostics. To address this issue, we propose a lossless encryption algorithm for medical images, which is based on a guided image generative neural network. Initially, we designed a guided image generation network. Subsequently, we train a generator using random keys to produce a key map. This key map then guides the encryption of the secret image through a bitwise XOR (bit-XOR) algorithm, effectively merging the secret image with the key map. During the decryption process, the original image can be restored losslessly by using a key map generated from a random key. The experimental results show that the encryption algorithm greatly ensures the security of data and shows strong anti-attack ability.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1331-1335"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNGG: Medical Image Lossless Encryption via Deep Network Guided Generative\",\"authors\":\"Lin Fan;Meng Li;Zhenting Hu;Yuan Hong;Dexing Kong\",\"doi\":\"10.1109/LSP.2025.3552528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensuring the security and integrity of medical images is crucial for telemedicine. Recently, deep learning-based image encryption techniques have significantly improved data transmission security. However, the unpredictability of complex models may lead to damage during image reconstruction, thereby negatively impacting medical diagnostics. To address this issue, we propose a lossless encryption algorithm for medical images, which is based on a guided image generative neural network. Initially, we designed a guided image generation network. Subsequently, we train a generator using random keys to produce a key map. This key map then guides the encryption of the secret image through a bitwise XOR (bit-XOR) algorithm, effectively merging the secret image with the key map. During the decryption process, the original image can be restored losslessly by using a key map generated from a random key. The experimental results show that the encryption algorithm greatly ensures the security of data and shows strong anti-attack ability.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"1331-1335\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10930820/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10930820/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

确保医学图像的安全性和完整性对于远程医疗至关重要。近年来,基于深度学习的图像加密技术显著提高了数据传输的安全性。然而,复杂模型的不可预测性可能导致图像重建过程中的损伤,从而对医学诊断产生负面影响。为了解决这一问题,我们提出了一种基于引导图像生成神经网络的医学图像无损加密算法。首先,我们设计了一个引导图像生成网络。随后,我们使用随机密钥训练生成器生成密钥映射。然后,这个密钥映射通过逐位异或(bit-XOR)算法指导秘密图像的加密,从而有效地将秘密图像与密钥映射合并。在解密过程中,可以使用由随机密钥生成的密钥映射无损地恢复原始图像。实验结果表明,该加密算法极大地保证了数据的安全性,具有较强的抗攻击能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNGG: Medical Image Lossless Encryption via Deep Network Guided Generative
Ensuring the security and integrity of medical images is crucial for telemedicine. Recently, deep learning-based image encryption techniques have significantly improved data transmission security. However, the unpredictability of complex models may lead to damage during image reconstruction, thereby negatively impacting medical diagnostics. To address this issue, we propose a lossless encryption algorithm for medical images, which is based on a guided image generative neural network. Initially, we designed a guided image generation network. Subsequently, we train a generator using random keys to produce a key map. This key map then guides the encryption of the secret image through a bitwise XOR (bit-XOR) algorithm, effectively merging the secret image with the key map. During the decryption process, the original image can be restored losslessly by using a key map generated from a random key. The experimental results show that the encryption algorithm greatly ensures the security of data and shows strong anti-attack ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信