基于自适应PI控制器的人工智能优化方法增强风电双馈感应发电机的稳态和动态性能

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
Mahmoud M. Elkholy , M. Abdelateef Mostafa , Enas A. El-Hay
{"title":"基于自适应PI控制器的人工智能优化方法增强风电双馈感应发电机的稳态和动态性能","authors":"Mahmoud M. Elkholy ,&nbsp;M. Abdelateef Mostafa ,&nbsp;Enas A. El-Hay","doi":"10.1016/j.rineng.2025.104631","DOIUrl":null,"url":null,"abstract":"<div><div>Owing to the anticipated rise in the wind energy production and its efficient integration with the grid, wind power ranks among the most appealing renewable energy sources globally. Several robust control schemes are necessary for enhancing the overall system efficiency, power quality and ensuring a more reliable operation of the controller. Thus, the bonobo optimizer (BO) is employed to determine the optimal controllers’ parameters for grid connected doubly fed induction generator (DFIG) based wind energy conversion system (WECS). The proposed optimal performance of WECS is developed by controlling 19 controller parameters to minimize the torque ripple and maximum power point tracking (MPPT) of WT-DFIG. The optimization variables are the parameters of the proportional-integral (PI) of rotor and grid sides converters, capacitance and voltage of DC bus, the values of a delta connected LC filter for rotor side converter and L filter for grid side converter. The optimum power curve and pitch angle control are estimated as the reference values of WT-DFIG system. The BO results are validated by comparing them with particle swarm optimizer (PSO). The Matlab environment is used to simulate the 2.4 MW DFIG based WECS.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"26 ","pages":"Article 104631"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing steady-state and dynamic performance of wind turbine doubly fed induction generator using AI optimization approaches with adaptive PI controllers\",\"authors\":\"Mahmoud M. Elkholy ,&nbsp;M. Abdelateef Mostafa ,&nbsp;Enas A. El-Hay\",\"doi\":\"10.1016/j.rineng.2025.104631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Owing to the anticipated rise in the wind energy production and its efficient integration with the grid, wind power ranks among the most appealing renewable energy sources globally. Several robust control schemes are necessary for enhancing the overall system efficiency, power quality and ensuring a more reliable operation of the controller. Thus, the bonobo optimizer (BO) is employed to determine the optimal controllers’ parameters for grid connected doubly fed induction generator (DFIG) based wind energy conversion system (WECS). The proposed optimal performance of WECS is developed by controlling 19 controller parameters to minimize the torque ripple and maximum power point tracking (MPPT) of WT-DFIG. The optimization variables are the parameters of the proportional-integral (PI) of rotor and grid sides converters, capacitance and voltage of DC bus, the values of a delta connected LC filter for rotor side converter and L filter for grid side converter. The optimum power curve and pitch angle control are estimated as the reference values of WT-DFIG system. The BO results are validated by comparing them with particle swarm optimizer (PSO). The Matlab environment is used to simulate the 2.4 MW DFIG based WECS.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"26 \",\"pages\":\"Article 104631\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259012302500708X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259012302500708X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于风能产量的预期增长及其与电网的有效整合,风能成为全球最具吸引力的可再生能源之一。几个鲁棒控制方案是必要的,以提高整体系统的效率,电能质量和确保更可靠的控制器运行。因此,采用倭黑猩猩优化器(BO)来确定基于并网双馈感应发电机(DFIG)的风能转换系统(WECS)的最优控制器参数。通过控制19个控制器参数,使WT-DFIG的转矩脉动和最大功率点跟踪(MPPT)最小化,实现了wcs的最优性能。优化变量为转子侧变换器和电网侧变换器的比例积分(PI)参数、直流母线的电容和电压、转子侧变换器的三角形连接LC滤波器和电网侧变换器的L滤波器的值。估计出最佳功率曲线和俯仰角控制作为WT-DFIG系统的参考值。通过与粒子群优化器(PSO)的比较,验证了BO算法的有效性。利用Matlab环境对基于2.4 MW DFIG的wcs进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing steady-state and dynamic performance of wind turbine doubly fed induction generator using AI optimization approaches with adaptive PI controllers
Owing to the anticipated rise in the wind energy production and its efficient integration with the grid, wind power ranks among the most appealing renewable energy sources globally. Several robust control schemes are necessary for enhancing the overall system efficiency, power quality and ensuring a more reliable operation of the controller. Thus, the bonobo optimizer (BO) is employed to determine the optimal controllers’ parameters for grid connected doubly fed induction generator (DFIG) based wind energy conversion system (WECS). The proposed optimal performance of WECS is developed by controlling 19 controller parameters to minimize the torque ripple and maximum power point tracking (MPPT) of WT-DFIG. The optimization variables are the parameters of the proportional-integral (PI) of rotor and grid sides converters, capacitance and voltage of DC bus, the values of a delta connected LC filter for rotor side converter and L filter for grid side converter. The optimum power curve and pitch angle control are estimated as the reference values of WT-DFIG system. The BO results are validated by comparing them with particle swarm optimizer (PSO). The Matlab environment is used to simulate the 2.4 MW DFIG based WECS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信