体积控制热界面材料的热传递研究

IF 5 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Jungmin Lee , Woosung Park
{"title":"体积控制热界面材料的热传递研究","authors":"Jungmin Lee ,&nbsp;Woosung Park","doi":"10.1016/j.polymertesting.2025.108780","DOIUrl":null,"url":null,"abstract":"<div><div>For thermal management, thermal interface materials are essential to reduce parasitic thermal resistance by filling microscopic gaps at interface. While much of previous research has focused on enhancing the thermal conductivity of the materials, the inconsistency in experimental data limits fundamental investigation in the thermal interface materials. In this work, we use a screen printing and pressing method to apply thermal interface material in a consistent manner, enabling fundamental investigation to identify an optimal bond line thickness for thermal interface material. Specifically, we apply two-dimensional array of cylindrical pillars and modulate its diameter and pitch to find an optimal volume experimentally. The thermal resistance is measured using a standard thermal interface test method, and an optimal volume of thermal interface material is experimentally determined. We apply a rheological model for the thermal interface material to estimate the optimal bond line thickness under pressure, and the model prediction agrees with experimental data within ∼89.4 %. This work establishes an experimental methodology for thermal interface material, bridging a gap between its theoretical and practical approaches.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"146 ","pages":"Article 108780"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of thermal transport across volume-controlled thermal interface materials\",\"authors\":\"Jungmin Lee ,&nbsp;Woosung Park\",\"doi\":\"10.1016/j.polymertesting.2025.108780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For thermal management, thermal interface materials are essential to reduce parasitic thermal resistance by filling microscopic gaps at interface. While much of previous research has focused on enhancing the thermal conductivity of the materials, the inconsistency in experimental data limits fundamental investigation in the thermal interface materials. In this work, we use a screen printing and pressing method to apply thermal interface material in a consistent manner, enabling fundamental investigation to identify an optimal bond line thickness for thermal interface material. Specifically, we apply two-dimensional array of cylindrical pillars and modulate its diameter and pitch to find an optimal volume experimentally. The thermal resistance is measured using a standard thermal interface test method, and an optimal volume of thermal interface material is experimentally determined. We apply a rheological model for the thermal interface material to estimate the optimal bond line thickness under pressure, and the model prediction agrees with experimental data within ∼89.4 %. This work establishes an experimental methodology for thermal interface material, bridging a gap between its theoretical and practical approaches.</div></div>\",\"PeriodicalId\":20628,\"journal\":{\"name\":\"Polymer Testing\",\"volume\":\"146 \",\"pages\":\"Article 108780\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142941825000947\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941825000947","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

对于热管理,热界面材料是必不可少的,以减少寄生热阻填补微观间隙的界面。虽然以往的研究大多集中在提高材料的导热性上,但实验数据的不一致性限制了对热界面材料的基础研究。在这项工作中,我们使用丝网印刷和压制方法以一致的方式应用热界面材料,使基础研究能够确定热界面材料的最佳粘合线厚度。具体来说,我们采用二维圆柱柱阵列,通过调节其直径和节距来寻找最佳体积。采用标准的热界面测试方法测量了热阻,并通过实验确定了热界面材料的最佳体积。我们应用热界面材料的流变模型来估计压力下的最佳键线厚度,模型预测与实验数据的一致性在89.4%以内。这项工作建立了热界面材料的实验方法,弥合了理论和实践方法之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of thermal transport across volume-controlled thermal interface materials
For thermal management, thermal interface materials are essential to reduce parasitic thermal resistance by filling microscopic gaps at interface. While much of previous research has focused on enhancing the thermal conductivity of the materials, the inconsistency in experimental data limits fundamental investigation in the thermal interface materials. In this work, we use a screen printing and pressing method to apply thermal interface material in a consistent manner, enabling fundamental investigation to identify an optimal bond line thickness for thermal interface material. Specifically, we apply two-dimensional array of cylindrical pillars and modulate its diameter and pitch to find an optimal volume experimentally. The thermal resistance is measured using a standard thermal interface test method, and an optimal volume of thermal interface material is experimentally determined. We apply a rheological model for the thermal interface material to estimate the optimal bond line thickness under pressure, and the model prediction agrees with experimental data within ∼89.4 %. This work establishes an experimental methodology for thermal interface material, bridging a gap between its theoretical and practical approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Testing
Polymer Testing 工程技术-材料科学:表征与测试
CiteScore
10.70
自引率
5.90%
发文量
328
审稿时长
44 days
期刊介绍: Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization. The scope includes but is not limited to the following main topics: Novel testing methods and Chemical analysis • mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology Physical properties and behaviour of novel polymer systems • nanoscale properties, morphology, transport properties Degradation and recycling of polymeric materials when combined with novel testing or characterization methods • degradation, biodegradation, ageing and fire retardancy Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信