Kanon Sampe , Hideyuki Katsumata , Ikki Tateishi , Mai Furukawa , Satoshi Kaneco
{"title":"改性NiCo2O4活化过氧单硫酸酯及其在双氯芬酸降解中的应用","authors":"Kanon Sampe , Hideyuki Katsumata , Ikki Tateishi , Mai Furukawa , Satoshi Kaneco","doi":"10.1016/j.nxmate.2025.100597","DOIUrl":null,"url":null,"abstract":"<div><div>Water pollution caused by pharmaceutical wastewater is becoming increasingly serious. Diclofenac (DCF), a pharmaceutical compound widely used in many medicines, is an organic pollutant that poses potential risks to ecosystems and human health. In this study, a morphologically modified NiCo<sub>2</sub>O<sub>4</sub> (NCO) catalyst was synthesized via a hydrothermal method and employed to activate peroxymonosulfate (PMS) for DCF degradation. As a result, 99.9 % of the DCF was successfully degraded within 10 min. It also succeeded in mineralizing 97.2 % of DCF after 10 min. Moreover, the NCO/PMS system was effective over a wide pH range. The degradation pathways involved both radical and non-radical mechanisms, with <sup>1</sup>O<sub>2</sub>, SO<sub>4</sub><sup>•–</sup>, and <sup>•</sup>OH identified as the primary active species. In addition, the surface hydroxyl groups on the NCO are likely to play a significant role in the degradation process. This paper presents the development of a highly efficient catalyst for the degradation of organic pollutants using PMS.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100597"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation of peroxymonosulfate by morphologically modified NiCo2O4 and application to diclofenac degradation\",\"authors\":\"Kanon Sampe , Hideyuki Katsumata , Ikki Tateishi , Mai Furukawa , Satoshi Kaneco\",\"doi\":\"10.1016/j.nxmate.2025.100597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Water pollution caused by pharmaceutical wastewater is becoming increasingly serious. Diclofenac (DCF), a pharmaceutical compound widely used in many medicines, is an organic pollutant that poses potential risks to ecosystems and human health. In this study, a morphologically modified NiCo<sub>2</sub>O<sub>4</sub> (NCO) catalyst was synthesized via a hydrothermal method and employed to activate peroxymonosulfate (PMS) for DCF degradation. As a result, 99.9 % of the DCF was successfully degraded within 10 min. It also succeeded in mineralizing 97.2 % of DCF after 10 min. Moreover, the NCO/PMS system was effective over a wide pH range. The degradation pathways involved both radical and non-radical mechanisms, with <sup>1</sup>O<sub>2</sub>, SO<sub>4</sub><sup>•–</sup>, and <sup>•</sup>OH identified as the primary active species. In addition, the surface hydroxyl groups on the NCO are likely to play a significant role in the degradation process. This paper presents the development of a highly efficient catalyst for the degradation of organic pollutants using PMS.</div></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"8 \",\"pages\":\"Article 100597\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949822825001157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825001157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Activation of peroxymonosulfate by morphologically modified NiCo2O4 and application to diclofenac degradation
Water pollution caused by pharmaceutical wastewater is becoming increasingly serious. Diclofenac (DCF), a pharmaceutical compound widely used in many medicines, is an organic pollutant that poses potential risks to ecosystems and human health. In this study, a morphologically modified NiCo2O4 (NCO) catalyst was synthesized via a hydrothermal method and employed to activate peroxymonosulfate (PMS) for DCF degradation. As a result, 99.9 % of the DCF was successfully degraded within 10 min. It also succeeded in mineralizing 97.2 % of DCF after 10 min. Moreover, the NCO/PMS system was effective over a wide pH range. The degradation pathways involved both radical and non-radical mechanisms, with 1O2, SO4•–, and •OH identified as the primary active species. In addition, the surface hydroxyl groups on the NCO are likely to play a significant role in the degradation process. This paper presents the development of a highly efficient catalyst for the degradation of organic pollutants using PMS.