Yinjing Shen , Nuo Yu , Wenjing Zhao , Shining Niu , Pu Qiu , Haiyan Zeng , Zhigang Chen , Wei Men , Dong Xie
{"title":"m1巨噬细胞膜伪装的纳米框架通过钙超载和光声敏激活多重免疫","authors":"Yinjing Shen , Nuo Yu , Wenjing Zhao , Shining Niu , Pu Qiu , Haiyan Zeng , Zhigang Chen , Wei Men , Dong Xie","doi":"10.1016/j.biomaterials.2025.123287","DOIUrl":null,"url":null,"abstract":"<div><div>Immunotherapy is a powerful weapon for inhibiting tumor metastasis, while its efficacy is significantly compromised in immunosuppressive tumor microenvironment (TME). To reverse TME, this work has developed biomimetic nanoframeworks with calcium overload and photo-sonosensitization capacity to activate multiple immunities for metastasis inhibition. The biomimetic nanoframeworks were prepared by the assembly of Ca<sup>2+</sup> ions and Protoporphyrin IX (PpIX) into nanoframeworks (Ca-PpIX), and the encapsulation of M1 macrophage membrane (Ca-PpIX@M). They exhibit pH-dependent Ca<sup>2+</sup> ions release, <sup>1</sup>O<sub>2</sub> generation and photothermal conversion under external near-infrared light and ultrasound stimuli. The Ca<sup>2+</sup>-overload and elevated <sup>1</sup>O<sub>2</sub> cause oxidative stress within cells, leading to efficient mitochondrial dysfunction. Successively, the mitochondrial dysfunction induces a reduction in adenosine triphosphate (ATP) levels to inhibit the HSP90 expression, improving photothermal ablation's efficacy. The photo-sonosensitization has the ability to repolarize macrophages with the ratio of M1/M2 macrophage increasing from 0.25 to 2.45, which is better than monoactivation. Importantly, the Ca-PpIX@M also can induce the process of immunogenic cell death, resulting in the maturation of dendritic cells (30.2 %) and activation of cytotoxic (12.4 %) and helper T cells (19.7 %), thereby enhancing antitumor immunity <em>in vivo</em>. As a result, tumor growth and metastasis have been significantly inhibited. This work offers insights into developing biomimetic nanoframeworks to reverse TME for activating multiple immunity.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"320 ","pages":"Article 123287"},"PeriodicalIF":12.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M1-macrophage membrane-camouflaged nanoframeworks activate multiple immunity via calcium overload and photo-sonosensitization\",\"authors\":\"Yinjing Shen , Nuo Yu , Wenjing Zhao , Shining Niu , Pu Qiu , Haiyan Zeng , Zhigang Chen , Wei Men , Dong Xie\",\"doi\":\"10.1016/j.biomaterials.2025.123287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Immunotherapy is a powerful weapon for inhibiting tumor metastasis, while its efficacy is significantly compromised in immunosuppressive tumor microenvironment (TME). To reverse TME, this work has developed biomimetic nanoframeworks with calcium overload and photo-sonosensitization capacity to activate multiple immunities for metastasis inhibition. The biomimetic nanoframeworks were prepared by the assembly of Ca<sup>2+</sup> ions and Protoporphyrin IX (PpIX) into nanoframeworks (Ca-PpIX), and the encapsulation of M1 macrophage membrane (Ca-PpIX@M). They exhibit pH-dependent Ca<sup>2+</sup> ions release, <sup>1</sup>O<sub>2</sub> generation and photothermal conversion under external near-infrared light and ultrasound stimuli. The Ca<sup>2+</sup>-overload and elevated <sup>1</sup>O<sub>2</sub> cause oxidative stress within cells, leading to efficient mitochondrial dysfunction. Successively, the mitochondrial dysfunction induces a reduction in adenosine triphosphate (ATP) levels to inhibit the HSP90 expression, improving photothermal ablation's efficacy. The photo-sonosensitization has the ability to repolarize macrophages with the ratio of M1/M2 macrophage increasing from 0.25 to 2.45, which is better than monoactivation. Importantly, the Ca-PpIX@M also can induce the process of immunogenic cell death, resulting in the maturation of dendritic cells (30.2 %) and activation of cytotoxic (12.4 %) and helper T cells (19.7 %), thereby enhancing antitumor immunity <em>in vivo</em>. As a result, tumor growth and metastasis have been significantly inhibited. This work offers insights into developing biomimetic nanoframeworks to reverse TME for activating multiple immunity.</div></div>\",\"PeriodicalId\":254,\"journal\":{\"name\":\"Biomaterials\",\"volume\":\"320 \",\"pages\":\"Article 123287\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142961225002066\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225002066","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
M1-macrophage membrane-camouflaged nanoframeworks activate multiple immunity via calcium overload and photo-sonosensitization
Immunotherapy is a powerful weapon for inhibiting tumor metastasis, while its efficacy is significantly compromised in immunosuppressive tumor microenvironment (TME). To reverse TME, this work has developed biomimetic nanoframeworks with calcium overload and photo-sonosensitization capacity to activate multiple immunities for metastasis inhibition. The biomimetic nanoframeworks were prepared by the assembly of Ca2+ ions and Protoporphyrin IX (PpIX) into nanoframeworks (Ca-PpIX), and the encapsulation of M1 macrophage membrane (Ca-PpIX@M). They exhibit pH-dependent Ca2+ ions release, 1O2 generation and photothermal conversion under external near-infrared light and ultrasound stimuli. The Ca2+-overload and elevated 1O2 cause oxidative stress within cells, leading to efficient mitochondrial dysfunction. Successively, the mitochondrial dysfunction induces a reduction in adenosine triphosphate (ATP) levels to inhibit the HSP90 expression, improving photothermal ablation's efficacy. The photo-sonosensitization has the ability to repolarize macrophages with the ratio of M1/M2 macrophage increasing from 0.25 to 2.45, which is better than monoactivation. Importantly, the Ca-PpIX@M also can induce the process of immunogenic cell death, resulting in the maturation of dendritic cells (30.2 %) and activation of cytotoxic (12.4 %) and helper T cells (19.7 %), thereby enhancing antitumor immunity in vivo. As a result, tumor growth and metastasis have been significantly inhibited. This work offers insights into developing biomimetic nanoframeworks to reverse TME for activating multiple immunity.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.