碳扩散机制作为一种有效的稳定性增强策略:以镍基催化剂光热催化甲烷干重整为例

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED
Dezheng Li , Huimin Liu , Xuewen Xiao , Manqi Zhao , Dehua He , Yiming Lei
{"title":"碳扩散机制作为一种有效的稳定性增强策略:以镍基催化剂光热催化甲烷干重整为例","authors":"Dezheng Li ,&nbsp;Huimin Liu ,&nbsp;Xuewen Xiao ,&nbsp;Manqi Zhao ,&nbsp;Dehua He ,&nbsp;Yiming Lei","doi":"10.1016/S1872-2067(24)60249-4","DOIUrl":null,"url":null,"abstract":"<div><div>Photothermal catalytic methane dry reforming (DRM) technology can convert greenhouse gases (<em>i.e.</em> CH<sub>4</sub> and CO<sub>2</sub>) into syngas (<em>i.e.</em> H<sub>2</sub> and CO), providing more opportunities for reducing the greenhouse effect and achieving carbon neutrality. In the DRM field, Ni-based catalysts attract wide attention due to their low cost and high activity. However, the carbon deposition over Ni-based catalysts always leads to rapid deactivation, which is still a main challenge. To improve the long-term stability of Ni-based catalysts, this work proposes a carbon-atom-diffusion strategy under photothermal conditions and investigates its effect on a Zn-doped Ni-based photothermal catalyst (Ni<sub>3</sub>Zn@CeO<sub>2</sub>). The photothermal catalytic behavior of Ni<sub>3</sub>Zn@CeO<sub>2</sub> can maintain more than 70 h in DRM reaction. And the photocatalytic DRM activity of Ni<sub>3</sub>Zn@CeO<sub>2</sub> is 1.2 times higher than thermal catalytic activity. Density functional theory (DFT) calculation and experimental characterizations indicate that Ni<sub>3</sub>Zn promotes the diffusion of carbon atoms into the Ni<sub>3</sub>Zn to form the Ni<sub>3</sub>ZnC<sub>0.7</sub> phase with body-centered cubic (bcc) structure, thus inhibiting carbon deposition. Further, in-situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and DFT calculation prove Ni<sub>3</sub>Zn@CeO<sub>2</sub> benefits the CH<sub>4</sub> activation and inhibits the carbon deposition during the DRM process. Through inducing carbon atoms diffusion within the Ni<sub>3</sub>Zn lattice, this work provides a straightforward and feasible strategy for achieving efficient photothermal catalytic DRM and even other CH<sub>4</sub> conversion implementations with long-term stability.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"70 ","pages":"Pages 399-409"},"PeriodicalIF":15.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon diffusion mechanism as an effective stability enhancement strategy: The case study of Ni-based catalyst for photothermal catalytic dry reforming of methane\",\"authors\":\"Dezheng Li ,&nbsp;Huimin Liu ,&nbsp;Xuewen Xiao ,&nbsp;Manqi Zhao ,&nbsp;Dehua He ,&nbsp;Yiming Lei\",\"doi\":\"10.1016/S1872-2067(24)60249-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photothermal catalytic methane dry reforming (DRM) technology can convert greenhouse gases (<em>i.e.</em> CH<sub>4</sub> and CO<sub>2</sub>) into syngas (<em>i.e.</em> H<sub>2</sub> and CO), providing more opportunities for reducing the greenhouse effect and achieving carbon neutrality. In the DRM field, Ni-based catalysts attract wide attention due to their low cost and high activity. However, the carbon deposition over Ni-based catalysts always leads to rapid deactivation, which is still a main challenge. To improve the long-term stability of Ni-based catalysts, this work proposes a carbon-atom-diffusion strategy under photothermal conditions and investigates its effect on a Zn-doped Ni-based photothermal catalyst (Ni<sub>3</sub>Zn@CeO<sub>2</sub>). The photothermal catalytic behavior of Ni<sub>3</sub>Zn@CeO<sub>2</sub> can maintain more than 70 h in DRM reaction. And the photocatalytic DRM activity of Ni<sub>3</sub>Zn@CeO<sub>2</sub> is 1.2 times higher than thermal catalytic activity. Density functional theory (DFT) calculation and experimental characterizations indicate that Ni<sub>3</sub>Zn promotes the diffusion of carbon atoms into the Ni<sub>3</sub>Zn to form the Ni<sub>3</sub>ZnC<sub>0.7</sub> phase with body-centered cubic (bcc) structure, thus inhibiting carbon deposition. Further, in-situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and DFT calculation prove Ni<sub>3</sub>Zn@CeO<sub>2</sub> benefits the CH<sub>4</sub> activation and inhibits the carbon deposition during the DRM process. Through inducing carbon atoms diffusion within the Ni<sub>3</sub>Zn lattice, this work provides a straightforward and feasible strategy for achieving efficient photothermal catalytic DRM and even other CH<sub>4</sub> conversion implementations with long-term stability.</div></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":\"70 \",\"pages\":\"Pages 399-409\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206724602494\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724602494","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

光热催化甲烷干重整(DRM)技术可以将温室气体(即CH4和CO2)转化为合成气(即H2和CO),为减少温室效应和实现碳中和提供了更多的机会。在DRM领域,镍基催化剂因其成本低、活性高而受到广泛关注。然而,镍基催化剂上的碳沉积总是导致快速失活,这仍然是一个主要的挑战。为了提高镍基催化剂的长期稳定性,本工作提出了光热条件下的碳原子扩散策略,并研究了其对掺杂锌的镍基光热催化剂的影响(Ni3Zn@CeO2)。Ni3Zn@CeO2在DRM反应中能保持70 h以上的光热催化行为。而Ni3Zn@CeO2的光催化DRM活性比热催化活性高1.2倍。密度泛函理论(DFT)计算和实验表征表明,Ni3Zn促进碳原子向Ni3Zn扩散,形成具有体心立方(bcc)结构的Ni3ZnC0.7相,从而抑制碳沉积。此外,原位漫反射红外傅里叶变换(DRIFT)光谱和DFT计算证明Ni3Zn@CeO2有利于CH4活化,抑制DRM过程中的碳沉积。通过诱导碳原子在Ni3Zn晶格内扩散,这项工作为实现高效的光热催化DRM甚至其他长期稳定的CH4转化实现提供了一种简单可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbon diffusion mechanism as an effective stability enhancement strategy: The case study of Ni-based catalyst for photothermal catalytic dry reforming of methane
Photothermal catalytic methane dry reforming (DRM) technology can convert greenhouse gases (i.e. CH4 and CO2) into syngas (i.e. H2 and CO), providing more opportunities for reducing the greenhouse effect and achieving carbon neutrality. In the DRM field, Ni-based catalysts attract wide attention due to their low cost and high activity. However, the carbon deposition over Ni-based catalysts always leads to rapid deactivation, which is still a main challenge. To improve the long-term stability of Ni-based catalysts, this work proposes a carbon-atom-diffusion strategy under photothermal conditions and investigates its effect on a Zn-doped Ni-based photothermal catalyst (Ni3Zn@CeO2). The photothermal catalytic behavior of Ni3Zn@CeO2 can maintain more than 70 h in DRM reaction. And the photocatalytic DRM activity of Ni3Zn@CeO2 is 1.2 times higher than thermal catalytic activity. Density functional theory (DFT) calculation and experimental characterizations indicate that Ni3Zn promotes the diffusion of carbon atoms into the Ni3Zn to form the Ni3ZnC0.7 phase with body-centered cubic (bcc) structure, thus inhibiting carbon deposition. Further, in-situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and DFT calculation prove Ni3Zn@CeO2 benefits the CH4 activation and inhibits the carbon deposition during the DRM process. Through inducing carbon atoms diffusion within the Ni3Zn lattice, this work provides a straightforward and feasible strategy for achieving efficient photothermal catalytic DRM and even other CH4 conversion implementations with long-term stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信