{"title":"卷积算子的重排不变范数不等式","authors":"Ron Kerman , S. Spektor","doi":"10.1016/j.jat.2025.106173","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where, as usual, <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> denotes the class of Lebesgue-integrable functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> denotes the class of functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> that are Lebesgue-measurable and bounded almost everywhere. Given <span><math><mrow><mi>f</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, set <span><span><span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>f</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mi>k</mi><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>)</mo></mrow><mi>f</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>y</mi><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>.</mo></mrow></math></span></span></span>We study inequalities of the form <span><span><span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>f</mi><mo>)</mo></mrow><mo>≤</mo><mi>C</mi><mi>σ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>in which <span><math><mrow><mi>C</mi><mo>></mo><mn>0</mn></mrow></math></span> is independent of <span><math><mrow><mi>f</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. The functionals <span><math><mi>ρ</mi></math></span> and <span><math><mi>σ</mi></math></span> are so-called rearrangement-invariant (r.i.) norms on <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mo>+</mo></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, the class of nonnegative measurable functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</div><div>Results first proved in the general context of r.i. norms are both specialized and expanded upon in the special case of Orlicz norms.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"310 ","pages":"Article 106173"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rearrangement-invariant norm inequalities for convolution operators\",\"authors\":\"Ron Kerman , S. Spektor\",\"doi\":\"10.1016/j.jat.2025.106173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where, as usual, <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> denotes the class of Lebesgue-integrable functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> denotes the class of functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> that are Lebesgue-measurable and bounded almost everywhere. Given <span><math><mrow><mi>f</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, set <span><span><span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>f</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mi>k</mi><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>)</mo></mrow><mi>f</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>y</mi><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>.</mo></mrow></math></span></span></span>We study inequalities of the form <span><span><span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>f</mi><mo>)</mo></mrow><mo>≤</mo><mi>C</mi><mi>σ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>in which <span><math><mrow><mi>C</mi><mo>></mo><mn>0</mn></mrow></math></span> is independent of <span><math><mrow><mi>f</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. The functionals <span><math><mi>ρ</mi></math></span> and <span><math><mi>σ</mi></math></span> are so-called rearrangement-invariant (r.i.) norms on <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mo>+</mo></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, the class of nonnegative measurable functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</div><div>Results first proved in the general context of r.i. norms are both specialized and expanded upon in the special case of Orlicz norms.</div></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":\"310 \",\"pages\":\"Article 106173\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904525000310\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904525000310","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设k∈(L1+L∞)(Rn),其中,通常,L1(Rn)表示Rn上的勒贝格可积函数类,L∞(Rn)表示Rn上的几乎处处勒贝格可测且有界的函数类。鉴于f∈(L1∩L∞)(Rn)组(Tkf) (x) =∫Rnk (x−y) f dy (y), x∈Rn。我们研究了ρ(Tkf)≤Cσ(f)的不等式,其中C>;0与f∈(L1∩L∞)(Rn)无关。泛函ρ和σ是所谓的M+(Rn)上的重排不变(r.i)范数,这是Rn上的一类非负可测函数。在r.i.范数的一般情况下首先证明的结果在Orlicz范数的特殊情况下都是专门化和扩展的。
Rearrangement-invariant norm inequalities for convolution operators
Let , where, as usual, denotes the class of Lebesgue-integrable functions on and denotes the class of functions on that are Lebesgue-measurable and bounded almost everywhere. Given , set We study inequalities of the form in which is independent of . The functionals and are so-called rearrangement-invariant (r.i.) norms on , the class of nonnegative measurable functions on .
Results first proved in the general context of r.i. norms are both specialized and expanded upon in the special case of Orlicz norms.
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.