卷积算子的重排不变范数不等式

IF 0.9 3区 数学 Q2 MATHEMATICS
Ron Kerman , S. Spektor
{"title":"卷积算子的重排不变范数不等式","authors":"Ron Kerman ,&nbsp;S. Spektor","doi":"10.1016/j.jat.2025.106173","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where, as usual, <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> denotes the class of Lebesgue-integrable functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> denotes the class of functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> that are Lebesgue-measurable and bounded almost everywhere. Given <span><math><mrow><mi>f</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, set <span><span><span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>f</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mi>k</mi><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>)</mo></mrow><mi>f</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>y</mi><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>.</mo></mrow></math></span></span></span>We study inequalities of the form <span><span><span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>f</mi><mo>)</mo></mrow><mo>≤</mo><mi>C</mi><mi>σ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>in which <span><math><mrow><mi>C</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is independent of <span><math><mrow><mi>f</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. The functionals <span><math><mi>ρ</mi></math></span> and <span><math><mi>σ</mi></math></span> are so-called rearrangement-invariant (r.i.) norms on <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mo>+</mo></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, the class of nonnegative measurable functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</div><div>Results first proved in the general context of r.i. norms are both specialized and expanded upon in the special case of Orlicz norms.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"310 ","pages":"Article 106173"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rearrangement-invariant norm inequalities for convolution operators\",\"authors\":\"Ron Kerman ,&nbsp;S. Spektor\",\"doi\":\"10.1016/j.jat.2025.106173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where, as usual, <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> denotes the class of Lebesgue-integrable functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> denotes the class of functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> that are Lebesgue-measurable and bounded almost everywhere. Given <span><math><mrow><mi>f</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, set <span><span><span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>f</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mi>k</mi><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>)</mo></mrow><mi>f</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>y</mi><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>.</mo></mrow></math></span></span></span>We study inequalities of the form <span><span><span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>f</mi><mo>)</mo></mrow><mo>≤</mo><mi>C</mi><mi>σ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>in which <span><math><mrow><mi>C</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is independent of <span><math><mrow><mi>f</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. The functionals <span><math><mi>ρ</mi></math></span> and <span><math><mi>σ</mi></math></span> are so-called rearrangement-invariant (r.i.) norms on <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mo>+</mo></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, the class of nonnegative measurable functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</div><div>Results first proved in the general context of r.i. norms are both specialized and expanded upon in the special case of Orlicz norms.</div></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":\"310 \",\"pages\":\"Article 106173\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904525000310\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904525000310","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设k∈(L1+L∞)(Rn),其中,通常,L1(Rn)表示Rn上的勒贝格可积函数类,L∞(Rn)表示Rn上的几乎处处勒贝格可测且有界的函数类。鉴于f∈(L1∩L∞)(Rn)组(Tkf) (x) =∫Rnk (x−y) f dy (y), x∈Rn。我们研究了ρ(Tkf)≤Cσ(f)的不等式,其中C>;0与f∈(L1∩L∞)(Rn)无关。泛函ρ和σ是所谓的M+(Rn)上的重排不变(r.i)范数,这是Rn上的一类非负可测函数。在r.i.范数的一般情况下首先证明的结果在Orlicz范数的特殊情况下都是专门化和扩展的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rearrangement-invariant norm inequalities for convolution operators
Let k(L1+L)(Rn), where, as usual, L1(Rn) denotes the class of Lebesgue-integrable functions on Rn and L(Rn) denotes the class of functions on Rn that are Lebesgue-measurable and bounded almost everywhere. Given f(L1L)(Rn), set (Tkf)(x)=Rnk(xy)f(y)dy,xRn.We study inequalities of the form ρ(Tkf)Cσ(f),in which C>0 is independent of f(L1L)(Rn). The functionals ρ and σ are so-called rearrangement-invariant (r.i.) norms on M+(Rn), the class of nonnegative measurable functions on Rn.
Results first proved in the general context of r.i. norms are both specialized and expanded upon in the special case of Orlicz norms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信