利用变压器神经网络对超声信号进行反卷积

IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS
T. Sendra, P. Belanger
{"title":"利用变压器神经网络对超声信号进行反卷积","authors":"T. Sendra,&nbsp;P. Belanger","doi":"10.1016/j.ultras.2025.107639","DOIUrl":null,"url":null,"abstract":"<div><div>Pulse-echo ultrasonic techniques play a crucial role in assessing wall thickness deterioration in safety-critical industries. Current approaches face limitations with low signal-to-noise ratios, weak echoes, or vague echo patterns typical of heavily corroded profiles. This study proposes a novel combination of Convolution Neural Networks (CNN) and Transformer Neural Networks (TNN) to improve thickness gauging accuracy for complex geometries and echo patterns. Recognizing the strength of TNN in language processing and speech recognition, the proposed network comprises three modules: 1. pre-processing CNN, 2. a Transformer model and 3. a post-processing CNN. Two datasets, one being simulation-generated, and the other, experimentally gathered from a corroded carbon steel staircase specimen, support the training and testing processes. Results indicate that the proposed model outperforms other AI architectures and traditional methods, providing a 5.45% improvement over CNN architectures from NDE literature, a 1.81% improvement over ResNet-50, and a 17.5% improvement compared to conventional thresholding techniques in accurately detecting depths with a precision under 0.5<span><math><mi>λ</mi></math></span>.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"152 ","pages":"Article 107639"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the use of a Transformer Neural Network to deconvolve ultrasonic signals\",\"authors\":\"T. Sendra,&nbsp;P. Belanger\",\"doi\":\"10.1016/j.ultras.2025.107639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pulse-echo ultrasonic techniques play a crucial role in assessing wall thickness deterioration in safety-critical industries. Current approaches face limitations with low signal-to-noise ratios, weak echoes, or vague echo patterns typical of heavily corroded profiles. This study proposes a novel combination of Convolution Neural Networks (CNN) and Transformer Neural Networks (TNN) to improve thickness gauging accuracy for complex geometries and echo patterns. Recognizing the strength of TNN in language processing and speech recognition, the proposed network comprises three modules: 1. pre-processing CNN, 2. a Transformer model and 3. a post-processing CNN. Two datasets, one being simulation-generated, and the other, experimentally gathered from a corroded carbon steel staircase specimen, support the training and testing processes. Results indicate that the proposed model outperforms other AI architectures and traditional methods, providing a 5.45% improvement over CNN architectures from NDE literature, a 1.81% improvement over ResNet-50, and a 17.5% improvement compared to conventional thresholding techniques in accurately detecting depths with a precision under 0.5<span><math><mi>λ</mi></math></span>.</div></div>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"152 \",\"pages\":\"Article 107639\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041624X25000769\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X25000769","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

脉冲回波超声技术在安全关键行业的壁厚恶化评估中起着至关重要的作用。目前的方法面临着低信噪比、弱回波或回波模式模糊的限制,这些都是严重腐蚀剖面的典型特征。本研究提出了卷积神经网络(CNN)和变压器神经网络(TNN)的新组合,以提高复杂几何形状和回波模式的厚度测量精度。考虑到TNN在语言处理和语音识别方面的优势,本文提出的网络包括三个模块:2.预处理CNN;一个Transformer模型;经过后期处理的CNN。两个数据集,一个是模拟生成的,另一个是从腐蚀的碳钢楼梯标本中实验收集的,支持培训和测试过程。结果表明,该模型优于其他AI架构和传统方法,与NDE文献中的CNN架构相比,提高了5.45%,比ResNet-50提高了1.81%,与传统阈值技术相比,在0.5λ以下的精度下准确检测深度方面提高了17.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the use of a Transformer Neural Network to deconvolve ultrasonic signals

On the use of a Transformer Neural Network to deconvolve ultrasonic signals
Pulse-echo ultrasonic techniques play a crucial role in assessing wall thickness deterioration in safety-critical industries. Current approaches face limitations with low signal-to-noise ratios, weak echoes, or vague echo patterns typical of heavily corroded profiles. This study proposes a novel combination of Convolution Neural Networks (CNN) and Transformer Neural Networks (TNN) to improve thickness gauging accuracy for complex geometries and echo patterns. Recognizing the strength of TNN in language processing and speech recognition, the proposed network comprises three modules: 1. pre-processing CNN, 2. a Transformer model and 3. a post-processing CNN. Two datasets, one being simulation-generated, and the other, experimentally gathered from a corroded carbon steel staircase specimen, support the training and testing processes. Results indicate that the proposed model outperforms other AI architectures and traditional methods, providing a 5.45% improvement over CNN architectures from NDE literature, a 1.81% improvement over ResNet-50, and a 17.5% improvement compared to conventional thresholding techniques in accurately detecting depths with a precision under 0.5λ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信