基于Dicke模型的量子量子位光腔节点:温度和耦合强度对子系统腔fock态分布、占用概率和熵的影响

IF 4.4 2区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohamed Barhoumi , Riccardo Bassoli , Frank H.P. Fitzek
{"title":"基于Dicke模型的量子量子位光腔节点:温度和耦合强度对子系统腔fock态分布、占用概率和熵的影响","authors":"Mohamed Barhoumi ,&nbsp;Riccardo Bassoli ,&nbsp;Frank H.P. Fitzek","doi":"10.1016/j.rinp.2025.108214","DOIUrl":null,"url":null,"abstract":"<div><div>One of the most attractive systems for scalable quantum processing is the trapped atom in the optical cavity, which is easily manipulable with lasers. The qubit cavity system represents an attractive structure for quantum optics, with possibilities for applications in quantum detecting, quantum computation, and quantum communication. In addition, the investigation of the cavity-atom system under temperature is a fundamental concept in quantum optics and quantum information science. Here we continue in this quantum way, investigating different qubit(s)-cavity systems (where we increase the numbers of the qubit inside the optical cavity from one to four). Using the Dicke model, we calculate the probability of occupation of the ground state of the cavity <span><math><mrow><mo>〈</mo><msup><mrow><mover><mrow><mi>a</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>†</mi></mrow></msup><mover><mrow><mi>a</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>〉</mo></mrow></math></span> and the expectation values <span><math><mrow><mo>〈</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>〉</mo></mrow></math></span> for each system. We find that these probabilities increase as the coupling strength <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> increases. This leads to reaching the ultra-strong coupling regime, which depends on the number of qubits. To describe the quantum state, we examine the cavity Wigner function WF as a function of the coupling strength <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>. Under the same parameters (e.g. <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and the dissipation rates), we find that the separation of the quantum state in the WFs representation is different from one system to another. Furthermore, since understanding these kinds of systems is very important in order to improve the quantum network system, we study the entropy <span><math><mi>S</mi></math></span> of the subsystems (such as <span><math><mi>S</mi></math></span> of qubit) in each system. Also, we move beyond by studying the effect of the temperature on the Fock-state distribution occupation probability and entropy of the subsystems. Our results present another step to understanding the qubit(s)-cavity interaction to improve the performance of future quantum networks based on this system. Where the interplay between temperature, coupling strengths, and the Fock-state occupation probabilities contributes significantly to the understanding of quantum decoherence and the thermodynamic properties of quantum systems. Our research on cavity qubit systems is crucial to the development and practical use of quantum networks, which will open the door to distributed quantum computing and other quantum technologies.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"72 ","pages":"Article 108214"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum qubit-optical cavity node: Effects of the temperature and coupling strengths on the cavity Fock-state distribution occupation probability and entropy of the subsystems using Dicke model\",\"authors\":\"Mohamed Barhoumi ,&nbsp;Riccardo Bassoli ,&nbsp;Frank H.P. Fitzek\",\"doi\":\"10.1016/j.rinp.2025.108214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One of the most attractive systems for scalable quantum processing is the trapped atom in the optical cavity, which is easily manipulable with lasers. The qubit cavity system represents an attractive structure for quantum optics, with possibilities for applications in quantum detecting, quantum computation, and quantum communication. In addition, the investigation of the cavity-atom system under temperature is a fundamental concept in quantum optics and quantum information science. Here we continue in this quantum way, investigating different qubit(s)-cavity systems (where we increase the numbers of the qubit inside the optical cavity from one to four). Using the Dicke model, we calculate the probability of occupation of the ground state of the cavity <span><math><mrow><mo>〈</mo><msup><mrow><mover><mrow><mi>a</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>†</mi></mrow></msup><mover><mrow><mi>a</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>〉</mo></mrow></math></span> and the expectation values <span><math><mrow><mo>〈</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>〉</mo></mrow></math></span> for each system. We find that these probabilities increase as the coupling strength <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> increases. This leads to reaching the ultra-strong coupling regime, which depends on the number of qubits. To describe the quantum state, we examine the cavity Wigner function WF as a function of the coupling strength <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>. Under the same parameters (e.g. <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and the dissipation rates), we find that the separation of the quantum state in the WFs representation is different from one system to another. Furthermore, since understanding these kinds of systems is very important in order to improve the quantum network system, we study the entropy <span><math><mi>S</mi></math></span> of the subsystems (such as <span><math><mi>S</mi></math></span> of qubit) in each system. Also, we move beyond by studying the effect of the temperature on the Fock-state distribution occupation probability and entropy of the subsystems. Our results present another step to understanding the qubit(s)-cavity interaction to improve the performance of future quantum networks based on this system. Where the interplay between temperature, coupling strengths, and the Fock-state occupation probabilities contributes significantly to the understanding of quantum decoherence and the thermodynamic properties of quantum systems. Our research on cavity qubit systems is crucial to the development and practical use of quantum networks, which will open the door to distributed quantum computing and other quantum technologies.</div></div>\",\"PeriodicalId\":21042,\"journal\":{\"name\":\"Results in Physics\",\"volume\":\"72 \",\"pages\":\"Article 108214\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211379725001081\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379725001081","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最具吸引力的可扩展量子处理系统之一是在光学腔中捕获原子,它很容易被激光操纵。量子比特空腔系统代表了量子光学的一个有吸引力的结构,在量子探测、量子计算和量子通信方面具有应用的可能性。此外,温度下腔-原子系统的研究是量子光学和量子信息科学的一个基本概念。在这里,我们继续以这种量子方式,研究不同的量子比特腔系统(我们将光学腔内的量子比特数从一个增加到四个)。利用Dicke模型,我们计算了每个系统占据空腔基态的概率< a°†a°>,期望值< Jz >。我们发现这些概率随着耦合强度Cs的增加而增加。这将导致达到超强耦合状态,这取决于量子位的数量。为了描述量子态,我们研究了腔维格纳函数WF作为耦合强度Cs的函数。在相同的参数(如Cs和耗散速率)下,我们发现WFs表示中量子态的分离在不同的系统中是不同的。此外,由于了解这些类型的系统对于改进量子网络系统非常重要,因此我们研究了每个系统中子系统的熵S(例如量子比特的熵S)。此外,我们还进一步研究了温度对子系统的fock态分布、占用概率和熵的影响。我们的结果为理解量子比特(s)-腔相互作用提供了另一个步骤,以提高基于该系统的未来量子网络的性能。其中温度、耦合强度和fock态占据概率之间的相互作用有助于理解量子退相干和量子系统的热力学性质。我们对空腔量子比特系统的研究对量子网络的发展和实际应用至关重要,这将为分布式量子计算和其他量子技术打开大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum qubit-optical cavity node: Effects of the temperature and coupling strengths on the cavity Fock-state distribution occupation probability and entropy of the subsystems using Dicke model
One of the most attractive systems for scalable quantum processing is the trapped atom in the optical cavity, which is easily manipulable with lasers. The qubit cavity system represents an attractive structure for quantum optics, with possibilities for applications in quantum detecting, quantum computation, and quantum communication. In addition, the investigation of the cavity-atom system under temperature is a fundamental concept in quantum optics and quantum information science. Here we continue in this quantum way, investigating different qubit(s)-cavity systems (where we increase the numbers of the qubit inside the optical cavity from one to four). Using the Dicke model, we calculate the probability of occupation of the ground state of the cavity aˆaˆ and the expectation values Jz for each system. We find that these probabilities increase as the coupling strength Cs increases. This leads to reaching the ultra-strong coupling regime, which depends on the number of qubits. To describe the quantum state, we examine the cavity Wigner function WF as a function of the coupling strength Cs. Under the same parameters (e.g. Cs and the dissipation rates), we find that the separation of the quantum state in the WFs representation is different from one system to another. Furthermore, since understanding these kinds of systems is very important in order to improve the quantum network system, we study the entropy S of the subsystems (such as S of qubit) in each system. Also, we move beyond by studying the effect of the temperature on the Fock-state distribution occupation probability and entropy of the subsystems. Our results present another step to understanding the qubit(s)-cavity interaction to improve the performance of future quantum networks based on this system. Where the interplay between temperature, coupling strengths, and the Fock-state occupation probabilities contributes significantly to the understanding of quantum decoherence and the thermodynamic properties of quantum systems. Our research on cavity qubit systems is crucial to the development and practical use of quantum networks, which will open the door to distributed quantum computing and other quantum technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Physics
Results in Physics MATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍: Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics. Results in Physics welcomes three types of papers: 1. Full research papers 2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as: - Data and/or a plot plus a description - Description of a new method or instrumentation - Negative results - Concept or design study 3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信