Ali Asghar Zolfaghari , Maryam Raeesi , Giuseppe Longo-Minnolo , Simona Consoli , Miles Dyck
{"title":"伊朗每日参考蒸散量预测:基于ERA5-land数据的机器学习方法","authors":"Ali Asghar Zolfaghari , Maryam Raeesi , Giuseppe Longo-Minnolo , Simona Consoli , Miles Dyck","doi":"10.1016/j.ejrh.2025.102343","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>Iran, characterized by diverse climatic conditions, including arid, semi-arid, and humid subtropical regions, where ET₀ dynamics vary significantly due to climatic differences.</div></div><div><h3>Study focus</h3><div>Reference evapotranspiration (ET₀) is a fundamental component of hydrological modelling and plays a critical role in agricultural water management. Reliable ET₀ predictions are essential for optimizing irrigation systems and estimating water demand. This study evaluates the potential of ERA5-Land reanalysis data, in combination with a Random Forest (RF) machine learning model, to predict daily and 8-day ET₀ across these diverse climatic conditions. Daily ET₀ values were calculated using the FAO-56 Penman-Monteith model and validated against ground-based observations from 50 weather stations (2008–2017). The RF model was trained using ERA5-Land climatic variables (air temperature, relative humidity, and ET₀ from ERA5-Land) along with the day of the year (DOY).</div></div><div><h3>New hydrological insights for the region</h3><div>Results demonstrated a high correlation between ERA5-Land temperature estimates and observed station data (Pearson correlation coefficient, r = 0.97; Root Mean Square Error, RMSE = 2.77°C), while relative humidity showed a weaker agreement (Normalized Root Mean Square Error, NRMSE = 21 %). The RF model outperformed traditional approaches in arid and semi-arid regions, achieving NRMSE values of 25 % and 28 %, respectively, with a 60 % improvement over humid regions. At the 8-day scale, predictive accuracy improved further (RMSE = 6.05 mm/8 days, r = 0.99). Beyond model performance, this study provides new insights into the spatiotemporal variability of ET₀ across different climatic zones. The findings indicate that temperature is the dominant climatic factor driving ET₀ variability, while relative humidity exhibits higher uncertainty, particularly in humid regions. Seasonal trends highlight notable summer ET₀ peaks exceeding 30 mm/day in arid zones, emphasizing the need for climate-adaptive irrigation strategies. The proposed methodology is computationally efficient, requiring minimal input variables, and demonstrates robust and scalable performance for large-scale ET₀ estimation. These findings provide a cost-effective solution for water resource management, drought monitoring, and climate change adaptation, particularly in data-scarce regions.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"59 ","pages":"Article 102343"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Daily reference evapotranspiration prediction in Iran: A machine learning approach with ERA5-land data\",\"authors\":\"Ali Asghar Zolfaghari , Maryam Raeesi , Giuseppe Longo-Minnolo , Simona Consoli , Miles Dyck\",\"doi\":\"10.1016/j.ejrh.2025.102343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Study region</h3><div>Iran, characterized by diverse climatic conditions, including arid, semi-arid, and humid subtropical regions, where ET₀ dynamics vary significantly due to climatic differences.</div></div><div><h3>Study focus</h3><div>Reference evapotranspiration (ET₀) is a fundamental component of hydrological modelling and plays a critical role in agricultural water management. Reliable ET₀ predictions are essential for optimizing irrigation systems and estimating water demand. This study evaluates the potential of ERA5-Land reanalysis data, in combination with a Random Forest (RF) machine learning model, to predict daily and 8-day ET₀ across these diverse climatic conditions. Daily ET₀ values were calculated using the FAO-56 Penman-Monteith model and validated against ground-based observations from 50 weather stations (2008–2017). The RF model was trained using ERA5-Land climatic variables (air temperature, relative humidity, and ET₀ from ERA5-Land) along with the day of the year (DOY).</div></div><div><h3>New hydrological insights for the region</h3><div>Results demonstrated a high correlation between ERA5-Land temperature estimates and observed station data (Pearson correlation coefficient, r = 0.97; Root Mean Square Error, RMSE = 2.77°C), while relative humidity showed a weaker agreement (Normalized Root Mean Square Error, NRMSE = 21 %). The RF model outperformed traditional approaches in arid and semi-arid regions, achieving NRMSE values of 25 % and 28 %, respectively, with a 60 % improvement over humid regions. At the 8-day scale, predictive accuracy improved further (RMSE = 6.05 mm/8 days, r = 0.99). Beyond model performance, this study provides new insights into the spatiotemporal variability of ET₀ across different climatic zones. The findings indicate that temperature is the dominant climatic factor driving ET₀ variability, while relative humidity exhibits higher uncertainty, particularly in humid regions. Seasonal trends highlight notable summer ET₀ peaks exceeding 30 mm/day in arid zones, emphasizing the need for climate-adaptive irrigation strategies. The proposed methodology is computationally efficient, requiring minimal input variables, and demonstrates robust and scalable performance for large-scale ET₀ estimation. These findings provide a cost-effective solution for water resource management, drought monitoring, and climate change adaptation, particularly in data-scarce regions.</div></div>\",\"PeriodicalId\":48620,\"journal\":{\"name\":\"Journal of Hydrology-Regional Studies\",\"volume\":\"59 \",\"pages\":\"Article 102343\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology-Regional Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214581825001685\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825001685","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Daily reference evapotranspiration prediction in Iran: A machine learning approach with ERA5-land data
Study region
Iran, characterized by diverse climatic conditions, including arid, semi-arid, and humid subtropical regions, where ET₀ dynamics vary significantly due to climatic differences.
Study focus
Reference evapotranspiration (ET₀) is a fundamental component of hydrological modelling and plays a critical role in agricultural water management. Reliable ET₀ predictions are essential for optimizing irrigation systems and estimating water demand. This study evaluates the potential of ERA5-Land reanalysis data, in combination with a Random Forest (RF) machine learning model, to predict daily and 8-day ET₀ across these diverse climatic conditions. Daily ET₀ values were calculated using the FAO-56 Penman-Monteith model and validated against ground-based observations from 50 weather stations (2008–2017). The RF model was trained using ERA5-Land climatic variables (air temperature, relative humidity, and ET₀ from ERA5-Land) along with the day of the year (DOY).
New hydrological insights for the region
Results demonstrated a high correlation between ERA5-Land temperature estimates and observed station data (Pearson correlation coefficient, r = 0.97; Root Mean Square Error, RMSE = 2.77°C), while relative humidity showed a weaker agreement (Normalized Root Mean Square Error, NRMSE = 21 %). The RF model outperformed traditional approaches in arid and semi-arid regions, achieving NRMSE values of 25 % and 28 %, respectively, with a 60 % improvement over humid regions. At the 8-day scale, predictive accuracy improved further (RMSE = 6.05 mm/8 days, r = 0.99). Beyond model performance, this study provides new insights into the spatiotemporal variability of ET₀ across different climatic zones. The findings indicate that temperature is the dominant climatic factor driving ET₀ variability, while relative humidity exhibits higher uncertainty, particularly in humid regions. Seasonal trends highlight notable summer ET₀ peaks exceeding 30 mm/day in arid zones, emphasizing the need for climate-adaptive irrigation strategies. The proposed methodology is computationally efficient, requiring minimal input variables, and demonstrates robust and scalable performance for large-scale ET₀ estimation. These findings provide a cost-effective solution for water resource management, drought monitoring, and climate change adaptation, particularly in data-scarce regions.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.