Haotian Tang , Rui Li , Tongqing Song , Shenghong Ju
{"title":"具有抽水蓄能电站和多种储能配置的水光风系统短期优化调度与综合评价","authors":"Haotian Tang , Rui Li , Tongqing Song , Shenghong Ju","doi":"10.1016/j.apenergy.2025.125787","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing utilization of photovoltaic and wind power within the grid, coupled with evolving energy policies, poses significant challenges to the structural integrity and operational performance of existing hybrid energy systems (HES). Combining hydropower plants with pumped hydro storage to build hybrid pumped storage hydropower plants (HPSHP) effectively capitalizes on the benefits of both technologies, thereby improving economic viability and operational flexibility. However, the integration of HPSHP with photovoltaic and wind power remains inadequately investigated. Moreover, the operational constraints of pumped storage systems necessitate the exploration of innovative hybrid energy storage coupling strategies. To address this, a multi-objective optimization model for the HPSHP-photovoltaic-wind-battery system (HPSHP-PWB) is proposed. Subsequently, an optimal operation scheduling strategy is developed, tailored to the constraints of hybrid energy storage systems, along with a profitability model that incorporates peak-valley electricity pricing mechanisms and green power subsidies. The objectively-assigned superior-inferior solution distance method is employed to identify the optimal solution, while a comprehensive multi-criteria analysis framework is established for in-depth evaluations under various scenarios. Finally, analysis based on practical applications in Guizhou Province indicates that the proposed HPSHP-PWB enhances multi-performance metrics, demonstrating remarkable capabilities in economic viability and scheduling robustness. These findings provide valuable insights for the future development of HES.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"389 ","pages":"Article 125787"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term optimal scheduling and comprehensive assessment of hydro-photovoltaic-wind systems augmented with hybrid pumped storage hydropower plants and diversified energy storage configurations\",\"authors\":\"Haotian Tang , Rui Li , Tongqing Song , Shenghong Ju\",\"doi\":\"10.1016/j.apenergy.2025.125787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing utilization of photovoltaic and wind power within the grid, coupled with evolving energy policies, poses significant challenges to the structural integrity and operational performance of existing hybrid energy systems (HES). Combining hydropower plants with pumped hydro storage to build hybrid pumped storage hydropower plants (HPSHP) effectively capitalizes on the benefits of both technologies, thereby improving economic viability and operational flexibility. However, the integration of HPSHP with photovoltaic and wind power remains inadequately investigated. Moreover, the operational constraints of pumped storage systems necessitate the exploration of innovative hybrid energy storage coupling strategies. To address this, a multi-objective optimization model for the HPSHP-photovoltaic-wind-battery system (HPSHP-PWB) is proposed. Subsequently, an optimal operation scheduling strategy is developed, tailored to the constraints of hybrid energy storage systems, along with a profitability model that incorporates peak-valley electricity pricing mechanisms and green power subsidies. The objectively-assigned superior-inferior solution distance method is employed to identify the optimal solution, while a comprehensive multi-criteria analysis framework is established for in-depth evaluations under various scenarios. Finally, analysis based on practical applications in Guizhou Province indicates that the proposed HPSHP-PWB enhances multi-performance metrics, demonstrating remarkable capabilities in economic viability and scheduling robustness. These findings provide valuable insights for the future development of HES.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"389 \",\"pages\":\"Article 125787\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925005173\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925005173","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Short-term optimal scheduling and comprehensive assessment of hydro-photovoltaic-wind systems augmented with hybrid pumped storage hydropower plants and diversified energy storage configurations
The increasing utilization of photovoltaic and wind power within the grid, coupled with evolving energy policies, poses significant challenges to the structural integrity and operational performance of existing hybrid energy systems (HES). Combining hydropower plants with pumped hydro storage to build hybrid pumped storage hydropower plants (HPSHP) effectively capitalizes on the benefits of both technologies, thereby improving economic viability and operational flexibility. However, the integration of HPSHP with photovoltaic and wind power remains inadequately investigated. Moreover, the operational constraints of pumped storage systems necessitate the exploration of innovative hybrid energy storage coupling strategies. To address this, a multi-objective optimization model for the HPSHP-photovoltaic-wind-battery system (HPSHP-PWB) is proposed. Subsequently, an optimal operation scheduling strategy is developed, tailored to the constraints of hybrid energy storage systems, along with a profitability model that incorporates peak-valley electricity pricing mechanisms and green power subsidies. The objectively-assigned superior-inferior solution distance method is employed to identify the optimal solution, while a comprehensive multi-criteria analysis framework is established for in-depth evaluations under various scenarios. Finally, analysis based on practical applications in Guizhou Province indicates that the proposed HPSHP-PWB enhances multi-performance metrics, demonstrating remarkable capabilities in economic viability and scheduling robustness. These findings provide valuable insights for the future development of HES.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.