Aidana Beisenova, Wihan Adi, Shinwon Kang, Kenzie B. Germanson, Simon Nam, Samir Rosas, Shovasis Kumar Biswas, Manish S. Patankar, Seog-Jin Jeon, Filiz Yesilkoy
{"title":"High-Precision Biochemical Sensing with Resonant Monocrystalline Plasmonic Ag Microcubes in the Mid-Infrared Spectrum","authors":"Aidana Beisenova, Wihan Adi, Shinwon Kang, Kenzie B. Germanson, Simon Nam, Samir Rosas, Shovasis Kumar Biswas, Manish S. Patankar, Seog-Jin Jeon, Filiz Yesilkoy","doi":"10.1021/acsnano.5c00624","DOIUrl":null,"url":null,"abstract":"Infrared (IR) spectroscopic fingerprinting is a powerful analytical tool for characterizing molecular compositions across biological, environmental, and industrial samples through their specific vibrational modes. Specifically, when the sample is characterized in resonant plasmonic cavities, as in the surface-enhanced mid-IR absorption spectroscopy (SEIRAS), highly sensitive and specific molecular detection can be achieved. However, current SEIRAS techniques rely on nanofabricated subwavelength antennas, limited by low-throughput lithographic processes, lacking scalability to address broad biochemical sensing applications. To address this, we present an on-resonance SEIRAS method utilizing silver (Ag) cubic microparticles (Ag-CMPs) with robust mid-IR plasmonic resonances. These monocrystalline Ag-CMPs, featuring sharp edges and vertices, are synthesized via a high-throughput, wet-chemical process. When dispersed on gold mirror substrates with an aluminum oxide spacer, Ag-CMPs support enhanced near-field light–matter interactions in nanocavities while enabling far-field imaging-based optical interrogation due to their strong extinction cross sections. We demonstrate the detection of polydimethylsiloxane (PDMS) and bovine serum albumin (BSA) monolayers by simply probing individual Ag-CMPs, enabled by the resonant amplification of the characteristic vibrational absorptions. Furthermore, our single-particle SEIRAS (SP-SEIRAS) approach effectively analyzes complex human peritoneal fluid (PF) samples, eliminating the challenges of standard bulk sample measurements. This scalable and efficient SP-SEIRAS method addresses key limitations of IR spectroscopic fingerprinting techniques, unlocking possibilities for their widespread adoption in real-world biochemical sensing applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"57 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c00624","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
High-Precision Biochemical Sensing with Resonant Monocrystalline Plasmonic Ag Microcubes in the Mid-Infrared Spectrum
Infrared (IR) spectroscopic fingerprinting is a powerful analytical tool for characterizing molecular compositions across biological, environmental, and industrial samples through their specific vibrational modes. Specifically, when the sample is characterized in resonant plasmonic cavities, as in the surface-enhanced mid-IR absorption spectroscopy (SEIRAS), highly sensitive and specific molecular detection can be achieved. However, current SEIRAS techniques rely on nanofabricated subwavelength antennas, limited by low-throughput lithographic processes, lacking scalability to address broad biochemical sensing applications. To address this, we present an on-resonance SEIRAS method utilizing silver (Ag) cubic microparticles (Ag-CMPs) with robust mid-IR plasmonic resonances. These monocrystalline Ag-CMPs, featuring sharp edges and vertices, are synthesized via a high-throughput, wet-chemical process. When dispersed on gold mirror substrates with an aluminum oxide spacer, Ag-CMPs support enhanced near-field light–matter interactions in nanocavities while enabling far-field imaging-based optical interrogation due to their strong extinction cross sections. We demonstrate the detection of polydimethylsiloxane (PDMS) and bovine serum albumin (BSA) monolayers by simply probing individual Ag-CMPs, enabled by the resonant amplification of the characteristic vibrational absorptions. Furthermore, our single-particle SEIRAS (SP-SEIRAS) approach effectively analyzes complex human peritoneal fluid (PF) samples, eliminating the challenges of standard bulk sample measurements. This scalable and efficient SP-SEIRAS method addresses key limitations of IR spectroscopic fingerprinting techniques, unlocking possibilities for their widespread adoption in real-world biochemical sensing applications.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.