新型Baeyer-Villiger氧化核苷在大规模合成MeMOP中的应用:GalXC平台上的关键中间体

IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED
John R. Rizzo, Prem Kumar Begari, Deepak Kalita, Jiancai Gu, Scott A. Frank, Nour Eddine Fahmi, Hem Raj Khatri
{"title":"新型Baeyer-Villiger氧化核苷在大规模合成MeMOP中的应用:GalXC平台上的关键中间体","authors":"John R. Rizzo, Prem Kumar Begari, Deepak Kalita, Jiancai Gu, Scott A. Frank, Nour Eddine Fahmi, Hem Raj Khatri","doi":"10.1021/acs.oprd.5c00021","DOIUrl":null,"url":null,"abstract":"The Baeyer–Villiger reaction is an established oxidative process that is applied for structural and functional group modification. We have applied the Baeyer–Villiger process to prepare 4′-oxo nucleosides. The application of Baeyer–Villiger oxidation to prepare MeMOP, a complex amidite used in the reported GalXC platform, will be discussed. A large-scale process to prepare MeMOP with an improved economic and operational safety risk profile will be highlighted. This novel application of the Baeyer–Villiger reaction to nucleoside platforms was used to scale up the MeMOP phosphoramidite process, which supported multiple clinical trials enabling siRNA campaigns.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"50 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Baeyer–Villiger Oxidation of Nucleosides Applied to the Large-Scale Synthesis of MeMOP: A Key Amidite in the GalXC Platform\",\"authors\":\"John R. Rizzo, Prem Kumar Begari, Deepak Kalita, Jiancai Gu, Scott A. Frank, Nour Eddine Fahmi, Hem Raj Khatri\",\"doi\":\"10.1021/acs.oprd.5c00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Baeyer–Villiger reaction is an established oxidative process that is applied for structural and functional group modification. We have applied the Baeyer–Villiger process to prepare 4′-oxo nucleosides. The application of Baeyer–Villiger oxidation to prepare MeMOP, a complex amidite used in the reported GalXC platform, will be discussed. A large-scale process to prepare MeMOP with an improved economic and operational safety risk profile will be highlighted. This novel application of the Baeyer–Villiger reaction to nucleoside platforms was used to scale up the MeMOP phosphoramidite process, which supported multiple clinical trials enabling siRNA campaigns.\",\"PeriodicalId\":55,\"journal\":{\"name\":\"Organic Process Research & Development\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Process Research & Development\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.oprd.5c00021\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.5c00021","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Baeyer-Villiger反应是一种已建立的用于结构和官能团修饰的氧化过程。我们已经应用Baeyer-Villiger工艺制备了4′-氧基核苷。本文将讨论Baeyer-Villiger氧化法制备MeMOP(一种用于GalXC平台的复合中间体)的应用。将重点介绍一个大规模的过程,以制备具有改进的经济和操作安全风险的MeMOP。这种Baeyer-Villiger反应在核苷平台上的新应用被用于扩大MeMOP磷酰胺工艺,该工艺支持多个临床试验,使siRNA运动成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Novel Baeyer–Villiger Oxidation of Nucleosides Applied to the Large-Scale Synthesis of MeMOP: A Key Amidite in the GalXC Platform

Novel Baeyer–Villiger Oxidation of Nucleosides Applied to the Large-Scale Synthesis of MeMOP: A Key Amidite in the GalXC Platform
The Baeyer–Villiger reaction is an established oxidative process that is applied for structural and functional group modification. We have applied the Baeyer–Villiger process to prepare 4′-oxo nucleosides. The application of Baeyer–Villiger oxidation to prepare MeMOP, a complex amidite used in the reported GalXC platform, will be discussed. A large-scale process to prepare MeMOP with an improved economic and operational safety risk profile will be highlighted. This novel application of the Baeyer–Villiger reaction to nucleoside platforms was used to scale up the MeMOP phosphoramidite process, which supported multiple clinical trials enabling siRNA campaigns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信