由拉普拉斯压力调节的定向液滴聚结诱导跳跃

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zijin Zhang, Jin Wang, Yongqing He, Feng Jiao
{"title":"由拉普拉斯压力调节的定向液滴聚结诱导跳跃","authors":"Zijin Zhang, Jin Wang, Yongqing He, Feng Jiao","doi":"10.1021/acs.langmuir.5c00279","DOIUrl":null,"url":null,"abstract":"Coalescence-induced droplet jumping, a spontaneous droplet transport phenomenon, holds significant potential in anti-icing, anti-fogging, self-cleaning, and enhancing condensation heat transfer. However, droplet jumping has a low energy efficiency and an uncontrolled jumping orientation, severely restricting its practical use. We demonstrate experimentally that a pillar superhydrophobic surface may achieve dimensionless jumping velocity <i>v</i><sub>j</sub><sup>*</sup> = 0.72 and outstanding energy efficiency <i>η</i> = 56%. Compared to a flat superhydrophobic surface, the energy efficiency is raised by about 860%. The improvement in jumping efficiency is due to the pillar limitations and regularization of the internal droplet flow by restricting droplet deformation. For the first time, we have accomplished controlled droplet directional jumping within the 45–130° range by adjusting the magnitude and direction of the Laplace pressure. In addition, we thoroughly investigate how directional droplet jumping is affected by pillar geometric dimensions, droplet radius, and droplet size mismatch. This work introduces a new avenue for increasing the jumping velocity while managing the direction, resulting in better droplet jumping performance in applications.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"22 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directional Droplet Coalescence-Induced Jumping Regulated by Laplace Pressure\",\"authors\":\"Zijin Zhang, Jin Wang, Yongqing He, Feng Jiao\",\"doi\":\"10.1021/acs.langmuir.5c00279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coalescence-induced droplet jumping, a spontaneous droplet transport phenomenon, holds significant potential in anti-icing, anti-fogging, self-cleaning, and enhancing condensation heat transfer. However, droplet jumping has a low energy efficiency and an uncontrolled jumping orientation, severely restricting its practical use. We demonstrate experimentally that a pillar superhydrophobic surface may achieve dimensionless jumping velocity <i>v</i><sub>j</sub><sup>*</sup> = 0.72 and outstanding energy efficiency <i>η</i> = 56%. Compared to a flat superhydrophobic surface, the energy efficiency is raised by about 860%. The improvement in jumping efficiency is due to the pillar limitations and regularization of the internal droplet flow by restricting droplet deformation. For the first time, we have accomplished controlled droplet directional jumping within the 45–130° range by adjusting the magnitude and direction of the Laplace pressure. In addition, we thoroughly investigate how directional droplet jumping is affected by pillar geometric dimensions, droplet radius, and droplet size mismatch. This work introduces a new avenue for increasing the jumping velocity while managing the direction, resulting in better droplet jumping performance in applications.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.5c00279\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c00279","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚结诱导的液滴跳跃是一种自发的液滴传输现象,在防结冰、防雾、自清洁和增强冷凝传热方面具有重要的潜力。然而,液滴跳跃的能量效率较低,且跳跃方向不可控,严重制约了其实际应用。通过实验证明,柱状超疏水表面可以实现无量纲跳跃速度vj* = 0.72和卓越的能量效率η = 56%。与扁平的超疏水表面相比,能量效率提高了约860%。跳变效率的提高是由于柱的限制和通过限制液滴变形使内部液滴流动规格化。通过调整Laplace压力的大小和方向,首次实现了液滴在45-130°范围内的定向跳跃。此外,我们还深入研究了柱的几何尺寸、液滴半径和液滴尺寸不匹配对液滴定向跳跃的影响。本文提出了在控制液滴方向的同时增加液滴跳跃速度的新途径,从而在实际应用中获得了更好的液滴跳跃性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Directional Droplet Coalescence-Induced Jumping Regulated by Laplace Pressure

Directional Droplet Coalescence-Induced Jumping Regulated by Laplace Pressure
Coalescence-induced droplet jumping, a spontaneous droplet transport phenomenon, holds significant potential in anti-icing, anti-fogging, self-cleaning, and enhancing condensation heat transfer. However, droplet jumping has a low energy efficiency and an uncontrolled jumping orientation, severely restricting its practical use. We demonstrate experimentally that a pillar superhydrophobic surface may achieve dimensionless jumping velocity vj* = 0.72 and outstanding energy efficiency η = 56%. Compared to a flat superhydrophobic surface, the energy efficiency is raised by about 860%. The improvement in jumping efficiency is due to the pillar limitations and regularization of the internal droplet flow by restricting droplet deformation. For the first time, we have accomplished controlled droplet directional jumping within the 45–130° range by adjusting the magnitude and direction of the Laplace pressure. In addition, we thoroughly investigate how directional droplet jumping is affected by pillar geometric dimensions, droplet radius, and droplet size mismatch. This work introduces a new avenue for increasing the jumping velocity while managing the direction, resulting in better droplet jumping performance in applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信