翻转剧本:从光谱学预测金属卤化物钙钛矿的化学成分

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2025-04-10 DOI:10.1016/j.chempr.2025.102535
Alexander J. Norquist
{"title":"翻转剧本:从光谱学预测金属卤化物钙钛矿的化学成分","authors":"Alexander J. Norquist","doi":"10.1016/j.chempr.2025.102535","DOIUrl":null,"url":null,"abstract":"<div><div>In this issue of <em>Chem</em>, Harel and co-workers report a chemical-space-property descriptor model capable of predicting chemical compositions of metal halide perovskites by using fast optical analyses. This model is designed to enable facile monitoring of chemical composition and assessment of material properties in industrial-scale syntheses.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"11 4","pages":"Article 102535"},"PeriodicalIF":19.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flipping the script: Predicting chemical composition in metal-halide perovskites from optical spectroscopy\",\"authors\":\"Alexander J. Norquist\",\"doi\":\"10.1016/j.chempr.2025.102535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this issue of <em>Chem</em>, Harel and co-workers report a chemical-space-property descriptor model capable of predicting chemical compositions of metal halide perovskites by using fast optical analyses. This model is designed to enable facile monitoring of chemical composition and assessment of material properties in industrial-scale syntheses.</div></div>\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"11 4\",\"pages\":\"Article 102535\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451929425001251\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929425001251","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这一期的《化学》杂志上,Harel及其同事报告了一种化学空间属性描述符模型,该模型能够通过快速光学分析预测金属卤化物钙钛矿的化学成分。该模型旨在方便地监测工业规模合成中的化学成分和评估材料性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flipping the script: Predicting chemical composition in metal-halide perovskites from optical spectroscopy
In this issue of Chem, Harel and co-workers report a chemical-space-property descriptor model capable of predicting chemical compositions of metal halide perovskites by using fast optical analyses. This model is designed to enable facile monitoring of chemical composition and assessment of material properties in industrial-scale syntheses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信