Gautam Mitra, Jueting Zheng, Karen Schaefer, Michael Deffner, Jonathan Z. Low, Luis M. Campos, Carmen Herrmann, Theo A. Costi, Elke Scheer
{"title":"布拉特自由基分子结中的常规与单重态-三重态近藤效应:零偏置异常和磁电阻","authors":"Gautam Mitra, Jueting Zheng, Karen Schaefer, Michael Deffner, Jonathan Z. Low, Luis M. Campos, Carmen Herrmann, Theo A. Costi, Elke Scheer","doi":"10.1016/j.chempr.2025.102500","DOIUrl":null,"url":null,"abstract":"The Blatter radical has been suggested as a building block in future molecular spintronic devices because of its radical character and expected long spin lifetime. However, whether its radical character is maintained in single-molecule junctions depends on the environment. Here, we demonstrate the ability to retain the open-shell nature of the Blatter radical in a two-terminal device by the appearance of a Kondo resonance in transport spectroscopy. Additionally, a high negative magnetoresistance is observed in junctions that do not reveal a zero-bias anomaly. By combining distance-dependent and magnetic-field-dependent measurements and accompanying quantum-chemical and quantum-transport calculations, we show that both findings, the negative magnetoresistance and the Kondo features, can be consistently explained by a singlet-triplet Kondo model. Our findings provide the possibility of using the Blatter radical in a two-terminal system under cryogenic conditions and also reveal the magnetotransport properties emerging from different configurations of the molecule inside a junction.","PeriodicalId":268,"journal":{"name":"Chem","volume":"183 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conventional versus singlet-triplet Kondo effect in Blatter radical molecular junctions: Zero-bias anomalies and magnetoresistance\",\"authors\":\"Gautam Mitra, Jueting Zheng, Karen Schaefer, Michael Deffner, Jonathan Z. Low, Luis M. Campos, Carmen Herrmann, Theo A. Costi, Elke Scheer\",\"doi\":\"10.1016/j.chempr.2025.102500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Blatter radical has been suggested as a building block in future molecular spintronic devices because of its radical character and expected long spin lifetime. However, whether its radical character is maintained in single-molecule junctions depends on the environment. Here, we demonstrate the ability to retain the open-shell nature of the Blatter radical in a two-terminal device by the appearance of a Kondo resonance in transport spectroscopy. Additionally, a high negative magnetoresistance is observed in junctions that do not reveal a zero-bias anomaly. By combining distance-dependent and magnetic-field-dependent measurements and accompanying quantum-chemical and quantum-transport calculations, we show that both findings, the negative magnetoresistance and the Kondo features, can be consistently explained by a singlet-triplet Kondo model. Our findings provide the possibility of using the Blatter radical in a two-terminal system under cryogenic conditions and also reveal the magnetotransport properties emerging from different configurations of the molecule inside a junction.\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chempr.2025.102500\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102500","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Conventional versus singlet-triplet Kondo effect in Blatter radical molecular junctions: Zero-bias anomalies and magnetoresistance
The Blatter radical has been suggested as a building block in future molecular spintronic devices because of its radical character and expected long spin lifetime. However, whether its radical character is maintained in single-molecule junctions depends on the environment. Here, we demonstrate the ability to retain the open-shell nature of the Blatter radical in a two-terminal device by the appearance of a Kondo resonance in transport spectroscopy. Additionally, a high negative magnetoresistance is observed in junctions that do not reveal a zero-bias anomaly. By combining distance-dependent and magnetic-field-dependent measurements and accompanying quantum-chemical and quantum-transport calculations, we show that both findings, the negative magnetoresistance and the Kondo features, can be consistently explained by a singlet-triplet Kondo model. Our findings provide the possibility of using the Blatter radical in a two-terminal system under cryogenic conditions and also reveal the magnetotransport properties emerging from different configurations of the molecule inside a junction.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.