Xianyuan Liu, Jinman Zhou, Xianyong Lu, Zunfeng Liu
{"title":"以鸟巢为灵感,具有增强电磁干扰屏蔽的耐高温软机器人","authors":"Xianyuan Liu, Jinman Zhou, Xianyong Lu, Zunfeng Liu","doi":"10.1021/acsami.5c02500","DOIUrl":null,"url":null,"abstract":"The rapid development of aerospace, artificial intelligence, and flexible wearable electronics has led to an increasing demand for multifunctional electromagnetic interference (EMI) shielding materials, especially for lightweight and high-strength biomimetic intelligent actuators. In this study, we present polyolefin elastomer/aramid nanofiber/carbon nanotube (POE/ANF/CNT) composites with a sandwich architecture fabricated via layer-by-layer technology. Actuation is achieved by exploiting the differential thermal expansion coefficients among the layers, where the POE functions as the active layer, while ANFs and CNTs serve as inert reinforcement layers. The bird’s-nest-like CNT layer imparts the actuators with repeatable programming capabilities. These intelligent actuators exhibit rapid responses to light, electrical, and thermal stimuli, featuring a low activation energy, high actuation speed, significant deformation, and exceptional fatigue resistance. Inspired by paper cutting and origami techniques, the actuators achieve repeatable morphological programming and complex actuation behaviors. The POE/ANF/CNT composites also demonstrate effective EMI shielding (35.7 dB at 40 wt % CNTs), high tensile strength (39.1 MPa), superior Joule heating performance (301 °C at 20 V voltage), and excellent thermal stabilities (with a maximum decomposition temperature reaching 473 °C). These multifunctional intelligent materials hold significant potential for applications in flexible wearable electronic devices, EMI shielding, and soft robotics.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"35 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bird’s-Nest-Inspired, High-Temperature-Resistant Soft Robots with Enhanced Electromagnetic Interference Shielding\",\"authors\":\"Xianyuan Liu, Jinman Zhou, Xianyong Lu, Zunfeng Liu\",\"doi\":\"10.1021/acsami.5c02500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development of aerospace, artificial intelligence, and flexible wearable electronics has led to an increasing demand for multifunctional electromagnetic interference (EMI) shielding materials, especially for lightweight and high-strength biomimetic intelligent actuators. In this study, we present polyolefin elastomer/aramid nanofiber/carbon nanotube (POE/ANF/CNT) composites with a sandwich architecture fabricated via layer-by-layer technology. Actuation is achieved by exploiting the differential thermal expansion coefficients among the layers, where the POE functions as the active layer, while ANFs and CNTs serve as inert reinforcement layers. The bird’s-nest-like CNT layer imparts the actuators with repeatable programming capabilities. These intelligent actuators exhibit rapid responses to light, electrical, and thermal stimuli, featuring a low activation energy, high actuation speed, significant deformation, and exceptional fatigue resistance. Inspired by paper cutting and origami techniques, the actuators achieve repeatable morphological programming and complex actuation behaviors. The POE/ANF/CNT composites also demonstrate effective EMI shielding (35.7 dB at 40 wt % CNTs), high tensile strength (39.1 MPa), superior Joule heating performance (301 °C at 20 V voltage), and excellent thermal stabilities (with a maximum decomposition temperature reaching 473 °C). These multifunctional intelligent materials hold significant potential for applications in flexible wearable electronic devices, EMI shielding, and soft robotics.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c02500\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c02500","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Bird’s-Nest-Inspired, High-Temperature-Resistant Soft Robots with Enhanced Electromagnetic Interference Shielding
The rapid development of aerospace, artificial intelligence, and flexible wearable electronics has led to an increasing demand for multifunctional electromagnetic interference (EMI) shielding materials, especially for lightweight and high-strength biomimetic intelligent actuators. In this study, we present polyolefin elastomer/aramid nanofiber/carbon nanotube (POE/ANF/CNT) composites with a sandwich architecture fabricated via layer-by-layer technology. Actuation is achieved by exploiting the differential thermal expansion coefficients among the layers, where the POE functions as the active layer, while ANFs and CNTs serve as inert reinforcement layers. The bird’s-nest-like CNT layer imparts the actuators with repeatable programming capabilities. These intelligent actuators exhibit rapid responses to light, electrical, and thermal stimuli, featuring a low activation energy, high actuation speed, significant deformation, and exceptional fatigue resistance. Inspired by paper cutting and origami techniques, the actuators achieve repeatable morphological programming and complex actuation behaviors. The POE/ANF/CNT composites also demonstrate effective EMI shielding (35.7 dB at 40 wt % CNTs), high tensile strength (39.1 MPa), superior Joule heating performance (301 °C at 20 V voltage), and excellent thermal stabilities (with a maximum decomposition temperature reaching 473 °C). These multifunctional intelligent materials hold significant potential for applications in flexible wearable electronic devices, EMI shielding, and soft robotics.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.