{"title":"Fe3O4@Bi2S3纳米颗粒介导的mri引导下通过外磁对原位胶质母细胞瘤的精确放射增敏","authors":"Xiaowei Song, Liang Xiao, Lingling Xu, Yechun Jiang, Wanyue Fu, Benjin Chen, Wang Zheng, Haisheng Qian, Yongqiang Yu","doi":"10.1021/acsami.5c01498","DOIUrl":null,"url":null,"abstract":"Radioresistance in tumors and the excess damage in normal tissues during radiotherapy (RT) restrict the clinical application of glioblastoma RT. Image-guided radiosensitization is hopefully adopted to achieve precision RT. Nevertheless, the therapeutic effect of radiosensitizers in glioblastoma is unsatisfactory due to limitations of the blood–brain barrier and poor tumor targeting. Herein, Fe<sub>3</sub>O<sub>4</sub>@Bi<sub>2</sub>S<sub>3</sub> nanoparticles coated with a glioblastoma cell membrane (denoted as FBM) have been designed to sensitize RT. FBM accumulates precisely within the tumors via external magnetism and homologous adhesion capability. Afterward, FBM releases high-<i>Z</i> atoms (Bismuth) in ionizing radiation and tumor micro acidic environments that interact with ionizing radiation to generate high densities of secondary radiation, which leads to enhanced radiation dose deposits. Simultaneously, FBM generates reactive oxygen species, accumulates lipid peroxidation and Fe<sup>2+</sup>, depletes glutathione, and downregulates glutathione peroxidase 4 to activate ferroptosis. Notably, the tumor growth inhibition rate of FBM-mediated RT via external magnetism increases to 75.49% in the orthotopic glioblastoma model. Besides, FBM with magnetic resonance imaging performance shows the potential application in tumor diagnosis and therapy surveillance, thereby reducing damage to adjacent normal tissues and realizing MRI-guided precision RT. Hence, the novel multifunctional nanoplatform offers the potential for image-guided radiosensitization induced by activating ferroptosis, thus presenting an efficient radiotherapeutic approach for glioblastoma.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"30 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe3O4@Bi2S3 Nanoparticles Mediated MRI-Guided Precision Radiosensitization for Orthotopic Glioblastoma via External Magnetism\",\"authors\":\"Xiaowei Song, Liang Xiao, Lingling Xu, Yechun Jiang, Wanyue Fu, Benjin Chen, Wang Zheng, Haisheng Qian, Yongqiang Yu\",\"doi\":\"10.1021/acsami.5c01498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radioresistance in tumors and the excess damage in normal tissues during radiotherapy (RT) restrict the clinical application of glioblastoma RT. Image-guided radiosensitization is hopefully adopted to achieve precision RT. Nevertheless, the therapeutic effect of radiosensitizers in glioblastoma is unsatisfactory due to limitations of the blood–brain barrier and poor tumor targeting. Herein, Fe<sub>3</sub>O<sub>4</sub>@Bi<sub>2</sub>S<sub>3</sub> nanoparticles coated with a glioblastoma cell membrane (denoted as FBM) have been designed to sensitize RT. FBM accumulates precisely within the tumors via external magnetism and homologous adhesion capability. Afterward, FBM releases high-<i>Z</i> atoms (Bismuth) in ionizing radiation and tumor micro acidic environments that interact with ionizing radiation to generate high densities of secondary radiation, which leads to enhanced radiation dose deposits. Simultaneously, FBM generates reactive oxygen species, accumulates lipid peroxidation and Fe<sup>2+</sup>, depletes glutathione, and downregulates glutathione peroxidase 4 to activate ferroptosis. Notably, the tumor growth inhibition rate of FBM-mediated RT via external magnetism increases to 75.49% in the orthotopic glioblastoma model. Besides, FBM with magnetic resonance imaging performance shows the potential application in tumor diagnosis and therapy surveillance, thereby reducing damage to adjacent normal tissues and realizing MRI-guided precision RT. Hence, the novel multifunctional nanoplatform offers the potential for image-guided radiosensitization induced by activating ferroptosis, thus presenting an efficient radiotherapeutic approach for glioblastoma.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c01498\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c01498","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fe3O4@Bi2S3 Nanoparticles Mediated MRI-Guided Precision Radiosensitization for Orthotopic Glioblastoma via External Magnetism
Radioresistance in tumors and the excess damage in normal tissues during radiotherapy (RT) restrict the clinical application of glioblastoma RT. Image-guided radiosensitization is hopefully adopted to achieve precision RT. Nevertheless, the therapeutic effect of radiosensitizers in glioblastoma is unsatisfactory due to limitations of the blood–brain barrier and poor tumor targeting. Herein, Fe3O4@Bi2S3 nanoparticles coated with a glioblastoma cell membrane (denoted as FBM) have been designed to sensitize RT. FBM accumulates precisely within the tumors via external magnetism and homologous adhesion capability. Afterward, FBM releases high-Z atoms (Bismuth) in ionizing radiation and tumor micro acidic environments that interact with ionizing radiation to generate high densities of secondary radiation, which leads to enhanced radiation dose deposits. Simultaneously, FBM generates reactive oxygen species, accumulates lipid peroxidation and Fe2+, depletes glutathione, and downregulates glutathione peroxidase 4 to activate ferroptosis. Notably, the tumor growth inhibition rate of FBM-mediated RT via external magnetism increases to 75.49% in the orthotopic glioblastoma model. Besides, FBM with magnetic resonance imaging performance shows the potential application in tumor diagnosis and therapy surveillance, thereby reducing damage to adjacent normal tissues and realizing MRI-guided precision RT. Hence, the novel multifunctional nanoplatform offers the potential for image-guided radiosensitization induced by activating ferroptosis, thus presenting an efficient radiotherapeutic approach for glioblastoma.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.