Till Muser, Ekaterina Krymova, Alessandro Morabito, Martin Seydoux, Elena Vagnoni
{"title":"利用机器学习减少水力发电初创公司的疲劳损伤","authors":"Till Muser, Ekaterina Krymova, Alessandro Morabito, Martin Seydoux, Elena Vagnoni","doi":"10.1038/s41467-025-58229-z","DOIUrl":null,"url":null,"abstract":"<p>As the global shift towards renewable energy accelerates, achieving stability in power systems is crucial. Hydropower accounts for approximately 17% of energy produced worldwide, and with its capacity for active and reactive power regulation, is well-suited to provide necessary ancillary services. However, as demand for these services rises, hydropower systems must adapt to handle rapid dynamic changes and off-design conditions. Fatigue damage in hydraulic machines, driven by fluctuating loads and varying mechanical stresses, is especially prominent during the transient start-up of the machine. In this study, we introduce a data-driven approach to identify transient start-up trajectories that minimize fatigue damage. We optimize the trajectory by leveraging a machine learning model, trained on experimental stress data of reduced-scale model turbines. Numerical and experimental results confirm that our optimized trajectory significantly reduces start-up damage, representing a meaningful advancement in hydropower operations, maintenance, and the safe transition to higher operational flexibility.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"37 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue damage reduction in hydropower startups with machine learning\",\"authors\":\"Till Muser, Ekaterina Krymova, Alessandro Morabito, Martin Seydoux, Elena Vagnoni\",\"doi\":\"10.1038/s41467-025-58229-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the global shift towards renewable energy accelerates, achieving stability in power systems is crucial. Hydropower accounts for approximately 17% of energy produced worldwide, and with its capacity for active and reactive power regulation, is well-suited to provide necessary ancillary services. However, as demand for these services rises, hydropower systems must adapt to handle rapid dynamic changes and off-design conditions. Fatigue damage in hydraulic machines, driven by fluctuating loads and varying mechanical stresses, is especially prominent during the transient start-up of the machine. In this study, we introduce a data-driven approach to identify transient start-up trajectories that minimize fatigue damage. We optimize the trajectory by leveraging a machine learning model, trained on experimental stress data of reduced-scale model turbines. Numerical and experimental results confirm that our optimized trajectory significantly reduces start-up damage, representing a meaningful advancement in hydropower operations, maintenance, and the safe transition to higher operational flexibility.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58229-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58229-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Fatigue damage reduction in hydropower startups with machine learning
As the global shift towards renewable energy accelerates, achieving stability in power systems is crucial. Hydropower accounts for approximately 17% of energy produced worldwide, and with its capacity for active and reactive power regulation, is well-suited to provide necessary ancillary services. However, as demand for these services rises, hydropower systems must adapt to handle rapid dynamic changes and off-design conditions. Fatigue damage in hydraulic machines, driven by fluctuating loads and varying mechanical stresses, is especially prominent during the transient start-up of the machine. In this study, we introduce a data-driven approach to identify transient start-up trajectories that minimize fatigue damage. We optimize the trajectory by leveraging a machine learning model, trained on experimental stress data of reduced-scale model turbines. Numerical and experimental results confirm that our optimized trajectory significantly reduces start-up damage, representing a meaningful advancement in hydropower operations, maintenance, and the safe transition to higher operational flexibility.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.