细菌中第二信使信息传递的量化

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Jiarui Xiong, Liang Wang, Jialun Lin, Lei Ni, Rongrong Zhang, Shuai Yang, Yajia Huang, Jun Chu, Fan Jin
{"title":"细菌中第二信使信息传递的量化","authors":"Jiarui Xiong, Liang Wang, Jialun Lin, Lei Ni, Rongrong Zhang, Shuai Yang, Yajia Huang, Jun Chu, Fan Jin","doi":"10.1038/s41567-025-02848-2","DOIUrl":null,"url":null,"abstract":"<p>Bacterial second messengers are crucial for transmitting environmental information to cells. However, quantifying their information transmission capacity remains challenging. Here we develop a framework for quantifying information processing in cellular signalling systems. We engineer an isolated cyclic adenosine monophosphate (cAMP) signalling channel in <i>Pseudomonas aeruginosa</i> using targeted gene knockouts, optogenetics and a fluorescent cAMP probe. This design enables precise optical control and real-time monitoring of cAMP dynamics. By integrating experimental data with information theory, we reveal the optimal frequency for light-mediated cAMP signalling that maximizes information transmission, reaching about 40 bits per hour. This rate correlates strongly with cAMP degradation kinetics and uses a two-state encoding scheme. Our findings suggest a mechanism for fine-tuned regulation of multiple genes through temporal encoding of second-messenger signals, providing insights into bacterial adaptation strategies.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"34 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying second-messenger information transmission in bacteria\",\"authors\":\"Jiarui Xiong, Liang Wang, Jialun Lin, Lei Ni, Rongrong Zhang, Shuai Yang, Yajia Huang, Jun Chu, Fan Jin\",\"doi\":\"10.1038/s41567-025-02848-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bacterial second messengers are crucial for transmitting environmental information to cells. However, quantifying their information transmission capacity remains challenging. Here we develop a framework for quantifying information processing in cellular signalling systems. We engineer an isolated cyclic adenosine monophosphate (cAMP) signalling channel in <i>Pseudomonas aeruginosa</i> using targeted gene knockouts, optogenetics and a fluorescent cAMP probe. This design enables precise optical control and real-time monitoring of cAMP dynamics. By integrating experimental data with information theory, we reveal the optimal frequency for light-mediated cAMP signalling that maximizes information transmission, reaching about 40 bits per hour. This rate correlates strongly with cAMP degradation kinetics and uses a two-state encoding scheme. Our findings suggest a mechanism for fine-tuned regulation of multiple genes through temporal encoding of second-messenger signals, providing insights into bacterial adaptation strategies.</p>\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41567-025-02848-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02848-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

细菌的第二信使对于将环境信息传递给细胞至关重要。然而,量化它们的信息传输能力仍然具有挑战性。在这里,我们开发了一个框架,量化的信息处理在蜂窝信号系统。我们利用靶向基因敲除、光遗传学和荧光cAMP探针在铜绿假单胞菌中设计了一个分离的环磷酸腺苷(cAMP)信号通道。该设计实现了精确的光学控制和cAMP动态的实时监测。通过将实验数据与信息理论相结合,我们揭示了光介导cAMP信号的最佳频率,可以最大限度地提高信息传输,达到每小时40比特左右。该速率与cAMP降解动力学密切相关,并使用双状态编码方案。我们的发现提示了一种通过第二信使信号的时间编码对多个基因进行微调调节的机制,为细菌的适应策略提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantifying second-messenger information transmission in bacteria

Quantifying second-messenger information transmission in bacteria

Bacterial second messengers are crucial for transmitting environmental information to cells. However, quantifying their information transmission capacity remains challenging. Here we develop a framework for quantifying information processing in cellular signalling systems. We engineer an isolated cyclic adenosine monophosphate (cAMP) signalling channel in Pseudomonas aeruginosa using targeted gene knockouts, optogenetics and a fluorescent cAMP probe. This design enables precise optical control and real-time monitoring of cAMP dynamics. By integrating experimental data with information theory, we reveal the optimal frequency for light-mediated cAMP signalling that maximizes information transmission, reaching about 40 bits per hour. This rate correlates strongly with cAMP degradation kinetics and uses a two-state encoding scheme. Our findings suggest a mechanism for fine-tuned regulation of multiple genes through temporal encoding of second-messenger signals, providing insights into bacterial adaptation strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信