具有离散和分布延迟的分数阶BAM神经网络的新的与延迟相关的一致稳定性准则。

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shafiya Muthu
{"title":"具有离散和分布延迟的分数阶BAM神经网络的新的与延迟相关的一致稳定性准则。","authors":"Shafiya Muthu","doi":"10.1080/0954898X.2024.2448534","DOIUrl":null,"url":null,"abstract":"<p><p>Initially, a class of Caputo fractional-order bidirectional associative memory neural networks in two variables is developed, building upon the groundwork laid by delayed Caputo fractional system in one variable. Next, the Razumikhin-type uniform stability conditions, originally formulated for single-variable systems, are successfully extended to accommodate the complexities of delayed Caputo fractional systems in two variables. Leveraging this extension and employing a suitable Lyapunov function, the delay-dependent uniform stability criteria for the addressed fractional-order bidirectional associative memory neural networks are expressed in terms of linear matrix inequalities. Finally, the effectiveness and practicality of the theoretical findings are demonstrated through the application of two numerical examples, affirming the viability of the proposed approach.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-25"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New delay-dependent uniform stability criteria for fractional-order BAM neural networks with discrete and distributed delays.\",\"authors\":\"Shafiya Muthu\",\"doi\":\"10.1080/0954898X.2024.2448534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Initially, a class of Caputo fractional-order bidirectional associative memory neural networks in two variables is developed, building upon the groundwork laid by delayed Caputo fractional system in one variable. Next, the Razumikhin-type uniform stability conditions, originally formulated for single-variable systems, are successfully extended to accommodate the complexities of delayed Caputo fractional systems in two variables. Leveraging this extension and employing a suitable Lyapunov function, the delay-dependent uniform stability criteria for the addressed fractional-order bidirectional associative memory neural networks are expressed in terms of linear matrix inequalities. Finally, the effectiveness and practicality of the theoretical findings are demonstrated through the application of two numerical examples, affirming the viability of the proposed approach.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"1-25\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2024.2448534\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2448534","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

首先,在单变量延迟Caputo分数系统的基础上,建立了一类双变量Caputo分数阶双向联想记忆神经网络。其次,成功地将razumikhin型一致稳定条件推广到适用于单变量系统的延迟Caputo分数系统的复杂性。利用这一扩展并采用合适的Lyapunov函数,用线性矩阵不等式表示了所寻址的分数阶双向联想记忆神经网络的延迟相关一致稳定性准则。最后,通过两个数值算例验证了理论结果的有效性和实用性,验证了所提方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New delay-dependent uniform stability criteria for fractional-order BAM neural networks with discrete and distributed delays.

Initially, a class of Caputo fractional-order bidirectional associative memory neural networks in two variables is developed, building upon the groundwork laid by delayed Caputo fractional system in one variable. Next, the Razumikhin-type uniform stability conditions, originally formulated for single-variable systems, are successfully extended to accommodate the complexities of delayed Caputo fractional systems in two variables. Leveraging this extension and employing a suitable Lyapunov function, the delay-dependent uniform stability criteria for the addressed fractional-order bidirectional associative memory neural networks are expressed in terms of linear matrix inequalities. Finally, the effectiveness and practicality of the theoretical findings are demonstrated through the application of two numerical examples, affirming the viability of the proposed approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信