量子点作为生物相容性小RNA纳米载体调节巨噬细胞极化治疗阿什曼综合征。

IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING
Ji Eun Won, Mira Park, Seok-Ho Hong, Yeon Sun Kim, Haengseok Song
{"title":"量子点作为生物相容性小RNA纳米载体调节巨噬细胞极化治疗阿什曼综合征。","authors":"Ji Eun Won, Mira Park, Seok-Ho Hong, Yeon Sun Kim, Haengseok Song","doi":"10.1038/s41536-025-00403-4","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages play a key role in host defense and inflammation, with polarization ranging from pro-inflammatory M1 to anti-inflammatory M2 states. However, effective modulation of macrophage polarity via nucleotide delivery is challenging. This study developed polyethyleneimine-modified carboxyl quantum dots (QDP) as a biocompatible carrier for small RNA delivery to modulate macrophage polarization. QDP-mediated delivery of miR-10a (QDP/miR-10a) rebalanced macrophage polarity and alleviated uterine inflammation and fibrosis in a mouse model of Asherman's syndrome (AS). In vitro, QDP effectively delivered small RNA into RAW 264.7 cells without cytotoxicity, converting LPS-induced M1 to M2 macrophages by inhibiting NF-κB, MAPK, and AKT signaling. In vivo, QDP/miR-10a reduced M1 macrophages, restored polarization, and enhanced uterine restoration in AS mice without affecting systemic immunity. Thus, QDP represents a safe and effective nanocarrier for small RNA delivery to modulate macrophage polarization for inflammatory disease treatment, including AS.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"10 1","pages":"15"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937404/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantum dots as biocompatible small RNA nanocarriers modulating macrophage polarization to treat Asherman's syndrome.\",\"authors\":\"Ji Eun Won, Mira Park, Seok-Ho Hong, Yeon Sun Kim, Haengseok Song\",\"doi\":\"10.1038/s41536-025-00403-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macrophages play a key role in host defense and inflammation, with polarization ranging from pro-inflammatory M1 to anti-inflammatory M2 states. However, effective modulation of macrophage polarity via nucleotide delivery is challenging. This study developed polyethyleneimine-modified carboxyl quantum dots (QDP) as a biocompatible carrier for small RNA delivery to modulate macrophage polarization. QDP-mediated delivery of miR-10a (QDP/miR-10a) rebalanced macrophage polarity and alleviated uterine inflammation and fibrosis in a mouse model of Asherman's syndrome (AS). In vitro, QDP effectively delivered small RNA into RAW 264.7 cells without cytotoxicity, converting LPS-induced M1 to M2 macrophages by inhibiting NF-κB, MAPK, and AKT signaling. In vivo, QDP/miR-10a reduced M1 macrophages, restored polarization, and enhanced uterine restoration in AS mice without affecting systemic immunity. Thus, QDP represents a safe and effective nanocarrier for small RNA delivery to modulate macrophage polarization for inflammatory disease treatment, including AS.</p>\",\"PeriodicalId\":54236,\"journal\":{\"name\":\"npj Regenerative Medicine\",\"volume\":\"10 1\",\"pages\":\"15\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937404/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Regenerative Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41536-025-00403-4\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-025-00403-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

巨噬细胞在宿主防御和炎症中发挥关键作用,其极化状态从促炎M1到抗炎M2。然而,通过核苷酸传递有效调节巨噬细胞极性是具有挑战性的。本研究开发了聚乙烯亚胺修饰的羧基量子点(QDP)作为小RNA递送的生物相容性载体来调节巨噬细胞极化。在阿什曼综合征(AS)小鼠模型中,QDP介导的miR-10a (QDP/miR-10a)递送重新平衡巨噬细胞极性并减轻子宫炎症和纤维化。在体外,QDP有效地将小RNA递送到RAW 264.7细胞中,无细胞毒性,通过抑制NF-κB、MAPK和AKT信号传导,将lps诱导的M1转化为M2巨噬细胞。在体内,QDP/miR-10a在不影响全身免疫的情况下,减少了AS小鼠的M1巨噬细胞,恢复了极化,增强了子宫修复。因此,QDP是一种安全有效的小RNA递送纳米载体,可调节巨噬细胞极化,用于治疗炎性疾病,包括AS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum dots as biocompatible small RNA nanocarriers modulating macrophage polarization to treat Asherman's syndrome.

Macrophages play a key role in host defense and inflammation, with polarization ranging from pro-inflammatory M1 to anti-inflammatory M2 states. However, effective modulation of macrophage polarity via nucleotide delivery is challenging. This study developed polyethyleneimine-modified carboxyl quantum dots (QDP) as a biocompatible carrier for small RNA delivery to modulate macrophage polarization. QDP-mediated delivery of miR-10a (QDP/miR-10a) rebalanced macrophage polarity and alleviated uterine inflammation and fibrosis in a mouse model of Asherman's syndrome (AS). In vitro, QDP effectively delivered small RNA into RAW 264.7 cells without cytotoxicity, converting LPS-induced M1 to M2 macrophages by inhibiting NF-κB, MAPK, and AKT signaling. In vivo, QDP/miR-10a reduced M1 macrophages, restored polarization, and enhanced uterine restoration in AS mice without affecting systemic immunity. Thus, QDP represents a safe and effective nanocarrier for small RNA delivery to modulate macrophage polarization for inflammatory disease treatment, including AS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Regenerative Medicine
npj Regenerative Medicine Engineering-Biomedical Engineering
CiteScore
10.00
自引率
1.40%
发文量
71
审稿时长
12 weeks
期刊介绍: Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信