亚硝胺对水生无脊椎动物影响的证据权重评估:亚硝胺环境科学评论第二部分。

IF 6.4 2区 医学 Q1 ENVIRONMENTAL SCIENCES
J P Giesy, K R Solomon, J R Purdy, V J Kramer
{"title":"亚硝胺对水生无脊椎动物影响的证据权重评估:亚硝胺环境科学评论第二部分。","authors":"J P Giesy, K R Solomon, J R Purdy, V J Kramer","doi":"10.1080/10937404.2025.2478965","DOIUrl":null,"url":null,"abstract":"<p><p>Effects of sulfoxaflor (SFX) on aquatic invertebrates were assessed by comparing concentrations predicted to occur in or measured in surface waters to thresholds for adverse effects. Due to the specific mode of toxic action, fishes are relatively tolerant of the effects of SFX. <i>Daphnia magna</i> with an LC<sub>50</sub> of 378 mg SFX L<sup>-1</sup> (SD = 19.13) was similarly tolerant of the effects of SFX, while the LOEC was >110 mg SFX L<sup>-1</sup>. A threshold for effects on aquatic insects, based on the chironomid midge, <i>C. tentans</i>, had LOAEL and NOAEL values of 0.0455 and 0.0618 mg L<sup>-1</sup>, respectively. The acute-to-chronic ratio was 18. Simulation models and parameters selected for a range of applications to crops predicted environmental concentrations (EECs) in surface waters to range from 2.2 to 7.7 µg L<sup>-1</sup>. Based on these EECs, the maximum hazard quotient (HQ) was 0.11, which is less than the US EPA level of concern (LOC) of 0.5, which would normally be the threshold to trigger regulatory action or higher-tier assessments. The risks posed by SFX to aquatic organisms are predicted to be <i>de minimis</i>. Hazard quotients based on EEC values predicted in the standard, USEPA farm pond estimated by use of the Pesticides in Water Calculator (PWC version 1.52) for scenarios of maximum application rates for cotton and LOAEL and NOAEL values for aquatic insects for SFX were less than or similar to those for other insecticides including neonicotinoids and organophosphorus compounds.</p>","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":" ","pages":"1-29"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weight of evidence assessment of effects of sulfoxaflor on aquatic invertebrates: sulfoxaflor environmental science review part II.\",\"authors\":\"J P Giesy, K R Solomon, J R Purdy, V J Kramer\",\"doi\":\"10.1080/10937404.2025.2478965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Effects of sulfoxaflor (SFX) on aquatic invertebrates were assessed by comparing concentrations predicted to occur in or measured in surface waters to thresholds for adverse effects. Due to the specific mode of toxic action, fishes are relatively tolerant of the effects of SFX. <i>Daphnia magna</i> with an LC<sub>50</sub> of 378 mg SFX L<sup>-1</sup> (SD = 19.13) was similarly tolerant of the effects of SFX, while the LOEC was >110 mg SFX L<sup>-1</sup>. A threshold for effects on aquatic insects, based on the chironomid midge, <i>C. tentans</i>, had LOAEL and NOAEL values of 0.0455 and 0.0618 mg L<sup>-1</sup>, respectively. The acute-to-chronic ratio was 18. Simulation models and parameters selected for a range of applications to crops predicted environmental concentrations (EECs) in surface waters to range from 2.2 to 7.7 µg L<sup>-1</sup>. Based on these EECs, the maximum hazard quotient (HQ) was 0.11, which is less than the US EPA level of concern (LOC) of 0.5, which would normally be the threshold to trigger regulatory action or higher-tier assessments. The risks posed by SFX to aquatic organisms are predicted to be <i>de minimis</i>. Hazard quotients based on EEC values predicted in the standard, USEPA farm pond estimated by use of the Pesticides in Water Calculator (PWC version 1.52) for scenarios of maximum application rates for cotton and LOAEL and NOAEL values for aquatic insects for SFX were less than or similar to those for other insecticides including neonicotinoids and organophosphorus compounds.</p>\",\"PeriodicalId\":49971,\"journal\":{\"name\":\"Journal of Toxicology and Environmental Health-Part B-Critical Reviews\",\"volume\":\" \",\"pages\":\"1-29\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicology and Environmental Health-Part B-Critical Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10937404.2025.2478965\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10937404.2025.2478965","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通过比较地表水中预计出现的或测量到的浓度与不良影响阈值,评估了亚砜氟(SFX)对水生无脊椎动物的影响。由于毒性作用的特定模式,鱼类对SFX的影响相对耐受。大水蚤的LC50为378 mg SFX L-1 (SD = 19.13),对SFX的耐受性相似,而LOEC为110 mg SFX L-1。对水栖昆虫的影响阈值以摇蠓为例,LOAEL为0.0455 mg L-1, NOAEL为0.0618 mg L-1。急性/慢性比率为18。为作物的一系列应用选择的模拟模型和参数预测地表水中的环境浓度(EECs)范围为2.2至7.7 μ g L-1。基于这些eec,最大危害商(HQ)为0.11,低于美国环保局关注水平(LOC) 0.5,这通常是触发监管行动或更高级别评估的门槛。预计SFX对水生生物构成的风险极小。根据标准中预测的EEC值,USEPA农场池塘使用杀虫剂计算器(PWC版本1.52)对棉花的最大施用量和SFX的水生昆虫的LOAEL和NOAEL值估算的危害商数小于或类似于其他杀虫剂,包括新烟碱类和有机磷化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weight of evidence assessment of effects of sulfoxaflor on aquatic invertebrates: sulfoxaflor environmental science review part II.

Effects of sulfoxaflor (SFX) on aquatic invertebrates were assessed by comparing concentrations predicted to occur in or measured in surface waters to thresholds for adverse effects. Due to the specific mode of toxic action, fishes are relatively tolerant of the effects of SFX. Daphnia magna with an LC50 of 378 mg SFX L-1 (SD = 19.13) was similarly tolerant of the effects of SFX, while the LOEC was >110 mg SFX L-1. A threshold for effects on aquatic insects, based on the chironomid midge, C. tentans, had LOAEL and NOAEL values of 0.0455 and 0.0618 mg L-1, respectively. The acute-to-chronic ratio was 18. Simulation models and parameters selected for a range of applications to crops predicted environmental concentrations (EECs) in surface waters to range from 2.2 to 7.7 µg L-1. Based on these EECs, the maximum hazard quotient (HQ) was 0.11, which is less than the US EPA level of concern (LOC) of 0.5, which would normally be the threshold to trigger regulatory action or higher-tier assessments. The risks posed by SFX to aquatic organisms are predicted to be de minimis. Hazard quotients based on EEC values predicted in the standard, USEPA farm pond estimated by use of the Pesticides in Water Calculator (PWC version 1.52) for scenarios of maximum application rates for cotton and LOAEL and NOAEL values for aquatic insects for SFX were less than or similar to those for other insecticides including neonicotinoids and organophosphorus compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.80
自引率
6.90%
发文量
13
审稿时长
>24 weeks
期刊介绍: "Journal of Toxicology and Environmental Health: Part B - Critical Reviews" is an academic journal published by Taylor & Francis, focusing on the critical examination of research in the areas of environmental exposure and population health. With an ISSN identifier of 1093-7404, this journal has established itself as a significant source of scholarly content in the field of toxicology and environmental health. Since its inception, the journal has published over 424 articles that have garnered 35,097 citations, reflecting its impact and relevance in the scientific community. Known for its comprehensive reviews, the journal also goes by the names "Critical Reviews" and "Journal of Toxicology & Environmental Health, Part B, Critical Reviews." The journal's mission is to provide a platform for in-depth analysis and critical discussion of the latest findings in toxicology, environmental health, and related disciplines. By doing so, it contributes to the advancement of knowledge and understanding of the complex interactions between environmental factors and human health, aiding in the development of strategies to protect and improve public health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信