基于干细胞的脊髓损伤治疗方法:iPSCs的前景。

IF 3.6 3区 生物学 Q1 BIOLOGY
Chih-Wei Zeng
{"title":"基于干细胞的脊髓损伤治疗方法:iPSCs的前景。","authors":"Chih-Wei Zeng","doi":"10.3390/biology14030314","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a life-altering condition that leads to severe neurological deficits and significantly impacts patients' quality of life. Despite advancements in medical care, current treatment options remain largely palliative, with limited ability to promote meaningful functional recovery. Induced pluripotent stem cells (iPSCs) have emerged as a promising avenue for regenerative medicine, offering patient-specific, cell-based therapeutic potential for SCI repair. This review provides a comprehensive overview of recent advancements in iPSC-based approaches for SCI, detailing the strategies used to generate neural cell types, including neural progenitor cells, oligodendrocytes, astrocytes, and microglia, and their roles in promoting neuroprotection and regeneration. Additionally, we examine key preclinical and clinical studies, highlighting functional recovery assessments and discussing both standardized and debated evaluation metrics. Furthermore, we address critical challenges related to safety, tumorigenicity, immune response, survival, integration, and overcoming the inhibitory microenvironment of the injured spinal cord. We also explore emerging approaches in biomaterial scaffolds, gene editing, and rehabilitation strategies that may enhance the clinical applicability of iPSC-based therapies. By addressing these challenges and refining translational strategies, iPSC-based interventions hold significant potential to revolutionize SCI treatment and improve outcomes for affected individuals.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940451/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stem Cell-Based Approaches for Spinal Cord Injury: The Promise of iPSCs.\",\"authors\":\"Chih-Wei Zeng\",\"doi\":\"10.3390/biology14030314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal cord injury (SCI) is a life-altering condition that leads to severe neurological deficits and significantly impacts patients' quality of life. Despite advancements in medical care, current treatment options remain largely palliative, with limited ability to promote meaningful functional recovery. Induced pluripotent stem cells (iPSCs) have emerged as a promising avenue for regenerative medicine, offering patient-specific, cell-based therapeutic potential for SCI repair. This review provides a comprehensive overview of recent advancements in iPSC-based approaches for SCI, detailing the strategies used to generate neural cell types, including neural progenitor cells, oligodendrocytes, astrocytes, and microglia, and their roles in promoting neuroprotection and regeneration. Additionally, we examine key preclinical and clinical studies, highlighting functional recovery assessments and discussing both standardized and debated evaluation metrics. Furthermore, we address critical challenges related to safety, tumorigenicity, immune response, survival, integration, and overcoming the inhibitory microenvironment of the injured spinal cord. We also explore emerging approaches in biomaterial scaffolds, gene editing, and rehabilitation strategies that may enhance the clinical applicability of iPSC-based therapies. By addressing these challenges and refining translational strategies, iPSC-based interventions hold significant potential to revolutionize SCI treatment and improve outcomes for affected individuals.</p>\",\"PeriodicalId\":48624,\"journal\":{\"name\":\"Biology-Basel\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940451/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biology14030314\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14030314","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脊髓损伤(SCI)是一种改变生活的疾病,可导致严重的神经功能缺损,严重影响患者的生活质量。尽管医疗保健取得了进步,但目前的治疗方案仍然主要是姑息性的,促进有意义的功能恢复的能力有限。诱导多能干细胞(iPSCs)已成为再生医学的一个有前途的途径,为脊髓损伤修复提供了患者特异性的、基于细胞的治疗潜力。本文综述了基于ipsc的脊髓损伤治疗方法的最新进展,详细介绍了用于生成神经细胞类型的策略,包括神经祖细胞、少突胶质细胞、星形胶质细胞和小胶质细胞,以及它们在促进神经保护和再生中的作用。此外,我们检查关键的临床前和临床研究,强调功能恢复评估,并讨论标准化和有争议的评估指标。此外,我们还解决了与安全性、致瘤性、免疫反应、存活、整合和克服受损脊髓的抑制性微环境相关的关键挑战。我们还探索了生物材料支架、基因编辑和康复策略方面的新兴方法,这些方法可能会增强基于ipsc的治疗的临床适用性。通过解决这些挑战和完善转化策略,基于ipsc的干预措施具有革命性的SCI治疗和改善患者预后的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stem Cell-Based Approaches for Spinal Cord Injury: The Promise of iPSCs.

Spinal cord injury (SCI) is a life-altering condition that leads to severe neurological deficits and significantly impacts patients' quality of life. Despite advancements in medical care, current treatment options remain largely palliative, with limited ability to promote meaningful functional recovery. Induced pluripotent stem cells (iPSCs) have emerged as a promising avenue for regenerative medicine, offering patient-specific, cell-based therapeutic potential for SCI repair. This review provides a comprehensive overview of recent advancements in iPSC-based approaches for SCI, detailing the strategies used to generate neural cell types, including neural progenitor cells, oligodendrocytes, astrocytes, and microglia, and their roles in promoting neuroprotection and regeneration. Additionally, we examine key preclinical and clinical studies, highlighting functional recovery assessments and discussing both standardized and debated evaluation metrics. Furthermore, we address critical challenges related to safety, tumorigenicity, immune response, survival, integration, and overcoming the inhibitory microenvironment of the injured spinal cord. We also explore emerging approaches in biomaterial scaffolds, gene editing, and rehabilitation strategies that may enhance the clinical applicability of iPSC-based therapies. By addressing these challenges and refining translational strategies, iPSC-based interventions hold significant potential to revolutionize SCI treatment and improve outcomes for affected individuals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信