高血压糖尿病db/db小鼠高鞘磷脂含量的细胞外小泡抑制钙动员和增强阿米洛利敏感上皮钠通道活性

IF 3.6 3区 生物学 Q1 BIOLOGY
Hunter Ramsay, Ling Yu, Faisal F Alousi, Abdel A Alli
{"title":"高血压糖尿病db/db小鼠高鞘磷脂含量的细胞外小泡抑制钙动员和增强阿米洛利敏感上皮钠通道活性","authors":"Hunter Ramsay, Ling Yu, Faisal F Alousi, Abdel A Alli","doi":"10.3390/biology14030252","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) contain bioactive lipids that play a key role in pathophysiology. We hypothesized that EVs released from salt-loaded hypertensive diabetic db/db mice have increased bioactive lipid content that inhibits intracellular calcium mobilization and increases the activity of renal epithelial sodium channels (ENaC). An enrichment of sphingomyelins (SMs) was found in small urinary EVs (uEVs) isolated from salt-loaded hypertensive diabetic db/db mice (<i>n</i> = 4) compared to non-salt loaded db/db mice with diabetes alone (<i>n</i> = 4). Both groups of mice were included in the same cohort to control for variability. Cultured mouse cortical collecting duct (mpkCCD) cells loaded with a calcium reporter dye and challenged with small uEVs from hypertensive diabetic db/db mice showed a decrease in calcium mobilization when compared to cells treated with small uEVs from diabetic db/db mice. The amiloride-sensitive transepithelial current was increased in mpkCCD cells treated with small uEVs with abundant sphingomyelin content from hypertensive diabetic db/db mice in a dose- and time-dependent manner. Similar results were observed in mpkCCD cells and <i>Xenopus</i> 2F3 cells treated with exogenous sphingomyelin in a time-dependent manner. Single-channel patch clamp studies showed a decrease in ENaC activity in cells transiently transfected with sphingomyelin synthase 1/2 specific siRNA compared to non-targeting siRNA. These data suggest EVs with high sphingomyelin content positively regulate renal ENaC activity in a mechanism involving an inhibition of calcium mobilization.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939694/pdf/","citationCount":"0","resultStr":"{\"title\":\"Small Extracellular Vesicles with a High Sphingomyelin Content Isolated from Hypertensive Diabetic db/db Mice Inhibits Calcium Mobilization and Augments Amiloride-Sensitive Epithelial Sodium Channel Activity.\",\"authors\":\"Hunter Ramsay, Ling Yu, Faisal F Alousi, Abdel A Alli\",\"doi\":\"10.3390/biology14030252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracellular vesicles (EVs) contain bioactive lipids that play a key role in pathophysiology. We hypothesized that EVs released from salt-loaded hypertensive diabetic db/db mice have increased bioactive lipid content that inhibits intracellular calcium mobilization and increases the activity of renal epithelial sodium channels (ENaC). An enrichment of sphingomyelins (SMs) was found in small urinary EVs (uEVs) isolated from salt-loaded hypertensive diabetic db/db mice (<i>n</i> = 4) compared to non-salt loaded db/db mice with diabetes alone (<i>n</i> = 4). Both groups of mice were included in the same cohort to control for variability. Cultured mouse cortical collecting duct (mpkCCD) cells loaded with a calcium reporter dye and challenged with small uEVs from hypertensive diabetic db/db mice showed a decrease in calcium mobilization when compared to cells treated with small uEVs from diabetic db/db mice. The amiloride-sensitive transepithelial current was increased in mpkCCD cells treated with small uEVs with abundant sphingomyelin content from hypertensive diabetic db/db mice in a dose- and time-dependent manner. Similar results were observed in mpkCCD cells and <i>Xenopus</i> 2F3 cells treated with exogenous sphingomyelin in a time-dependent manner. Single-channel patch clamp studies showed a decrease in ENaC activity in cells transiently transfected with sphingomyelin synthase 1/2 specific siRNA compared to non-targeting siRNA. These data suggest EVs with high sphingomyelin content positively regulate renal ENaC activity in a mechanism involving an inhibition of calcium mobilization.</p>\",\"PeriodicalId\":48624,\"journal\":{\"name\":\"Biology-Basel\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939694/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biology14030252\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14030252","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞外囊泡(EVs)含有生物活性脂质,在病理生理中起关键作用。我们假设从盐负荷高血压糖尿病db/db小鼠释放的ev增加了生物活性脂质含量,抑制细胞内钙动员并增加肾上皮钠通道(ENaC)的活性。从盐负荷的高血压糖尿病db/db小鼠(n = 4)中分离的小尿ev (uev)中发现鞘磷脂(SMs)的富集,而非盐负荷的糖尿病db/db小鼠(n = 4)。两组小鼠被纳入同一队列以控制变异性。与用糖尿病db/db小鼠的小uev处理的细胞相比,加载钙报告染料并用高血压糖尿病db/db小鼠的小uev刺激培养的小鼠皮质集管(mpkCCD)细胞的钙动员减少。高血压糖尿病db/db小鼠外周血鞘磷脂含量丰富的小紫外处理后,mpkCCD细胞的阿米洛胺敏感的过上皮电流呈剂量和时间依赖性增加。在外源性鞘磷脂处理的mpkCCD细胞和爪蟾2F3细胞中也观察到类似的结果。单通道膜片钳研究显示,与非靶向siRNA相比,瞬时转染鞘磷脂合成酶1/2特异性siRNA的细胞中ENaC活性降低。这些数据表明,高鞘磷脂含量的ev通过抑制钙动员的机制积极调节肾ENaC活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small Extracellular Vesicles with a High Sphingomyelin Content Isolated from Hypertensive Diabetic db/db Mice Inhibits Calcium Mobilization and Augments Amiloride-Sensitive Epithelial Sodium Channel Activity.

Extracellular vesicles (EVs) contain bioactive lipids that play a key role in pathophysiology. We hypothesized that EVs released from salt-loaded hypertensive diabetic db/db mice have increased bioactive lipid content that inhibits intracellular calcium mobilization and increases the activity of renal epithelial sodium channels (ENaC). An enrichment of sphingomyelins (SMs) was found in small urinary EVs (uEVs) isolated from salt-loaded hypertensive diabetic db/db mice (n = 4) compared to non-salt loaded db/db mice with diabetes alone (n = 4). Both groups of mice were included in the same cohort to control for variability. Cultured mouse cortical collecting duct (mpkCCD) cells loaded with a calcium reporter dye and challenged with small uEVs from hypertensive diabetic db/db mice showed a decrease in calcium mobilization when compared to cells treated with small uEVs from diabetic db/db mice. The amiloride-sensitive transepithelial current was increased in mpkCCD cells treated with small uEVs with abundant sphingomyelin content from hypertensive diabetic db/db mice in a dose- and time-dependent manner. Similar results were observed in mpkCCD cells and Xenopus 2F3 cells treated with exogenous sphingomyelin in a time-dependent manner. Single-channel patch clamp studies showed a decrease in ENaC activity in cells transiently transfected with sphingomyelin synthase 1/2 specific siRNA compared to non-targeting siRNA. These data suggest EVs with high sphingomyelin content positively regulate renal ENaC activity in a mechanism involving an inhibition of calcium mobilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信