热应激对蟾蜍蝌蚪皮质酮释放和生长的时间效应研究。

IF 3.6 3区 生物学 Q1 BIOLOGY
Saeid Panahi Hassan Barough, Dillon J Monroe, Thomas C Clark, Caitlin R Gabor
{"title":"热应激对蟾蜍蝌蚪皮质酮释放和生长的时间效应研究。","authors":"Saeid Panahi Hassan Barough, Dillon J Monroe, Thomas C Clark, Caitlin R Gabor","doi":"10.3390/biology14030255","DOIUrl":null,"url":null,"abstract":"<p><p>Corticosterone (CORT) is a key glucocorticoid hormone that regulates energy balance and physiological responses to environmental stressors, making it a valuable biomarker for assessing how organisms cope with changing conditions. Understanding how amphibians respond to chronic thermal stress is critical in the context of climate change and urbanization. We investigated the effects of a week-long exposure to elevated water temperatures on CORT release rates and growth in Gulf Coast toad (<i>Incilius nebulifer</i>) tadpoles, a species adapted to variable thermal environments. Using a non-invasive water-borne hormone method, we measured CORT at multiple time points (1 h, 2 h, 6 h, 24 h, 48 h, and 5 days) post-treatment to assess how CORT varied with time after exposure to elevated heat vs. the control temperature. We found a significant time-by-treatment response in tadpoles after a week of exposure to 32 °C versus 23 °C (control) temperatures. Both control and treatment individuals showed a marked decrease in CORT release rates 6 h post-return to room temperature, but by 24 h post-experiment, CORT release rates were higher in the tadpoles exposed to 32 °C. Heat-exposed tadpoles also showed significantly faster growth during and after treatment, but a lower survival to 12 days, indicating a potential trade-off between survival and accelerated growth. Overall, our study highlights a trade-off for populations of <i>I. nebulifer</i> when exposed to thermal stress and suggests that amphibian responses to chronic environmental stressors are shaped by adaptive physiological strategies, with implications for understanding and conserving amphibian populations in a rapidly changing world.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940675/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating the Temporal Effects of Thermal Stress on Corticosterone Release and Growth in Toad Tadpoles.\",\"authors\":\"Saeid Panahi Hassan Barough, Dillon J Monroe, Thomas C Clark, Caitlin R Gabor\",\"doi\":\"10.3390/biology14030255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Corticosterone (CORT) is a key glucocorticoid hormone that regulates energy balance and physiological responses to environmental stressors, making it a valuable biomarker for assessing how organisms cope with changing conditions. Understanding how amphibians respond to chronic thermal stress is critical in the context of climate change and urbanization. We investigated the effects of a week-long exposure to elevated water temperatures on CORT release rates and growth in Gulf Coast toad (<i>Incilius nebulifer</i>) tadpoles, a species adapted to variable thermal environments. Using a non-invasive water-borne hormone method, we measured CORT at multiple time points (1 h, 2 h, 6 h, 24 h, 48 h, and 5 days) post-treatment to assess how CORT varied with time after exposure to elevated heat vs. the control temperature. We found a significant time-by-treatment response in tadpoles after a week of exposure to 32 °C versus 23 °C (control) temperatures. Both control and treatment individuals showed a marked decrease in CORT release rates 6 h post-return to room temperature, but by 24 h post-experiment, CORT release rates were higher in the tadpoles exposed to 32 °C. Heat-exposed tadpoles also showed significantly faster growth during and after treatment, but a lower survival to 12 days, indicating a potential trade-off between survival and accelerated growth. Overall, our study highlights a trade-off for populations of <i>I. nebulifer</i> when exposed to thermal stress and suggests that amphibian responses to chronic environmental stressors are shaped by adaptive physiological strategies, with implications for understanding and conserving amphibian populations in a rapidly changing world.</p>\",\"PeriodicalId\":48624,\"journal\":{\"name\":\"Biology-Basel\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940675/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biology14030255\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14030255","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

皮质酮(CORT)是一种关键的糖皮质激素,调节能量平衡和对环境压力的生理反应,使其成为评估生物体如何应对变化条件的有价值的生物标志物。在气候变化和城市化的背景下,了解两栖动物如何应对慢性热应激是至关重要的。我们研究了墨西哥湾沿岸蟾蜍(Incilius nebulifer)蝌蚪(一种适应可变热环境的物种)暴露在升高的水温下一周对CORT释放率和生长的影响。采用非侵入性水传播激素法,我们在治疗后多个时间点(1小时、2小时、6小时、24小时、48小时和5天)测量CORT,以评估暴露于高温与对照温度后CORT随时间的变化情况。我们发现,在32°C和23°C(对照)温度下暴露一周后,蝌蚪的治疗时间反应显著。对照组和处理组在返回室温后6 h的CORT释放率均显著降低,但在实验后24 h,暴露于32°C的蝌蚪的CORT释放率较高。热暴露的蝌蚪在治疗期间和治疗后也表现出明显更快的生长,但12天的存活率较低,这表明生存和加速生长之间可能存在权衡。总的来说,我们的研究强调了水蛭种群在暴露于热应激时的权衡,并表明两栖动物对慢性环境应激源的反应是由适应性生理策略形成的,这对在快速变化的世界中理解和保护两栖动物种群具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the Temporal Effects of Thermal Stress on Corticosterone Release and Growth in Toad Tadpoles.

Corticosterone (CORT) is a key glucocorticoid hormone that regulates energy balance and physiological responses to environmental stressors, making it a valuable biomarker for assessing how organisms cope with changing conditions. Understanding how amphibians respond to chronic thermal stress is critical in the context of climate change and urbanization. We investigated the effects of a week-long exposure to elevated water temperatures on CORT release rates and growth in Gulf Coast toad (Incilius nebulifer) tadpoles, a species adapted to variable thermal environments. Using a non-invasive water-borne hormone method, we measured CORT at multiple time points (1 h, 2 h, 6 h, 24 h, 48 h, and 5 days) post-treatment to assess how CORT varied with time after exposure to elevated heat vs. the control temperature. We found a significant time-by-treatment response in tadpoles after a week of exposure to 32 °C versus 23 °C (control) temperatures. Both control and treatment individuals showed a marked decrease in CORT release rates 6 h post-return to room temperature, but by 24 h post-experiment, CORT release rates were higher in the tadpoles exposed to 32 °C. Heat-exposed tadpoles also showed significantly faster growth during and after treatment, but a lower survival to 12 days, indicating a potential trade-off between survival and accelerated growth. Overall, our study highlights a trade-off for populations of I. nebulifer when exposed to thermal stress and suggests that amphibian responses to chronic environmental stressors are shaped by adaptive physiological strategies, with implications for understanding and conserving amphibian populations in a rapidly changing world.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信