反向传播人工神经网络提高多模传感器精度。

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Xue Zou, Xiaohong Wang, Jinchun Tu, Delun Chen, Yang Cao
{"title":"反向传播人工神经网络提高多模传感器精度。","authors":"Xue Zou, Xiaohong Wang, Jinchun Tu, Delun Chen, Yang Cao","doi":"10.3390/bios15030148","DOIUrl":null,"url":null,"abstract":"<p><p>The detection of small molecules is critical in many fields, but traditional electrochemical detection methods often exhibit limited accuracy. The construction of multi-mode sensors is a common strategy to improve detection accuracy. However, most existing multi-mode sensors rely on the separate analysis of each mode signal, which can easily lead to sensor failure when the deviation between different mode results is too large. In this study, we propose a multi-mode sensor based on Prussian Blue (PB) for ascorbic acid (AA) detection. We innovatively integrate back-propagation artificial neural networks (BP ANNs) to comprehensively process the three collected signal data sets, which successfully solves the problem of sensor failure caused by the large deviation of signal detection results, and greatly improves the prediction accuracy, detection range, and anti-interference of the sensor. Our findings provide an effective solution for optimizing the data analysis of multi-modal sensors, and show broad application prospects in bioanalysis, clinical diagnosis, and related fields.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940617/pdf/","citationCount":"0","resultStr":"{\"title\":\"Back Propagation Artificial Neural Network Enhanced Accuracy of Multi-Mode Sensors.\",\"authors\":\"Xue Zou, Xiaohong Wang, Jinchun Tu, Delun Chen, Yang Cao\",\"doi\":\"10.3390/bios15030148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The detection of small molecules is critical in many fields, but traditional electrochemical detection methods often exhibit limited accuracy. The construction of multi-mode sensors is a common strategy to improve detection accuracy. However, most existing multi-mode sensors rely on the separate analysis of each mode signal, which can easily lead to sensor failure when the deviation between different mode results is too large. In this study, we propose a multi-mode sensor based on Prussian Blue (PB) for ascorbic acid (AA) detection. We innovatively integrate back-propagation artificial neural networks (BP ANNs) to comprehensively process the three collected signal data sets, which successfully solves the problem of sensor failure caused by the large deviation of signal detection results, and greatly improves the prediction accuracy, detection range, and anti-interference of the sensor. Our findings provide an effective solution for optimizing the data analysis of multi-modal sensors, and show broad application prospects in bioanalysis, clinical diagnosis, and related fields.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940617/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15030148\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15030148","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

小分子的检测在许多领域都是至关重要的,但传统的电化学检测方法往往具有有限的准确性。构建多模传感器是提高检测精度的常用策略。然而,现有的多模传感器大多依赖于对各个模态信号的单独分析,当不同模态结果之间的偏差过大时,容易导致传感器失效。在这项研究中,我们提出了一种基于普鲁士蓝(PB)的多模传感器用于抗坏血酸(AA)的检测。我们创新地整合反向传播人工神经网络(BP ann)对采集到的三组信号数据集进行综合处理,成功解决了信号检测结果偏差大导致传感器失效的问题,大大提高了传感器的预测精度、检测范围和抗干扰能力。本研究结果为优化多模态传感器的数据分析提供了有效的解决方案,在生物分析、临床诊断等相关领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Back Propagation Artificial Neural Network Enhanced Accuracy of Multi-Mode Sensors.

The detection of small molecules is critical in many fields, but traditional electrochemical detection methods often exhibit limited accuracy. The construction of multi-mode sensors is a common strategy to improve detection accuracy. However, most existing multi-mode sensors rely on the separate analysis of each mode signal, which can easily lead to sensor failure when the deviation between different mode results is too large. In this study, we propose a multi-mode sensor based on Prussian Blue (PB) for ascorbic acid (AA) detection. We innovatively integrate back-propagation artificial neural networks (BP ANNs) to comprehensively process the three collected signal data sets, which successfully solves the problem of sensor failure caused by the large deviation of signal detection results, and greatly improves the prediction accuracy, detection range, and anti-interference of the sensor. Our findings provide an effective solution for optimizing the data analysis of multi-modal sensors, and show broad application prospects in bioanalysis, clinical diagnosis, and related fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信