{"title":"用于汗液中皮质醇稳定监测的可穿戴式分子印迹电化学传感器。","authors":"Yitao Chen, Zidong He, Yuanzhao Wu, Xinyu Bai, Yuancheng Li, Weiwei Yang, Yiwei Liu, Run-Wei Li","doi":"10.3390/bios15030194","DOIUrl":null,"url":null,"abstract":"<p><p>Cortisol, a steroid hormone, is closely associated with human mental stress. The rapid, real-time, and continuous detection of cortisol using wearable devices offers a promising approach for individual mental health. These devices must exhibit high sensitivity and long-term stability to ensure reliable performance. This study developed a wearable electrochemical sensor based on molecularly imprinted polymer (MIP) technology for real-time and dynamic monitoring of cortisol in sweat. A flexible gold (Au) electrode with interfacial hydrophilic treatment was employed to construct a highly stable electrode. The integration of a silk fibroin/polyvinylidene fluoride (SF/PVDF) composite membrane facilitates directional sweat transport, while liquid metal bonding enhances electrode flexibility and mechanical anti-delamination capability. The sensor exhibits an ultrawide detection range (0.1 pM to 5 μM), high selectivity (over 100-fold against interferents such as glucose and lactic acid), and long-term stability (less than 3.76% signal attenuation over 120 cycles). Additionally, a gradient modulus design was implemented to mitigate mechanical deformation interference under wearable conditions. As a flexible wearable device for cortisol monitoring in human sweat, the sensor's response closely aligns with the diurnal cortisol rhythm, offering a highly sensitive and interference-resistant wearable solution for mental health monitoring and advancing personalized dynamic assessment of stress-related disorders.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940103/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Wearable Molecularly Imprinted Electrochemical Sensor for Cortisol Stable Monitoring in Sweat.\",\"authors\":\"Yitao Chen, Zidong He, Yuanzhao Wu, Xinyu Bai, Yuancheng Li, Weiwei Yang, Yiwei Liu, Run-Wei Li\",\"doi\":\"10.3390/bios15030194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cortisol, a steroid hormone, is closely associated with human mental stress. The rapid, real-time, and continuous detection of cortisol using wearable devices offers a promising approach for individual mental health. These devices must exhibit high sensitivity and long-term stability to ensure reliable performance. This study developed a wearable electrochemical sensor based on molecularly imprinted polymer (MIP) technology for real-time and dynamic monitoring of cortisol in sweat. A flexible gold (Au) electrode with interfacial hydrophilic treatment was employed to construct a highly stable electrode. The integration of a silk fibroin/polyvinylidene fluoride (SF/PVDF) composite membrane facilitates directional sweat transport, while liquid metal bonding enhances electrode flexibility and mechanical anti-delamination capability. The sensor exhibits an ultrawide detection range (0.1 pM to 5 μM), high selectivity (over 100-fold against interferents such as glucose and lactic acid), and long-term stability (less than 3.76% signal attenuation over 120 cycles). Additionally, a gradient modulus design was implemented to mitigate mechanical deformation interference under wearable conditions. As a flexible wearable device for cortisol monitoring in human sweat, the sensor's response closely aligns with the diurnal cortisol rhythm, offering a highly sensitive and interference-resistant wearable solution for mental health monitoring and advancing personalized dynamic assessment of stress-related disorders.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940103/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15030194\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15030194","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A Wearable Molecularly Imprinted Electrochemical Sensor for Cortisol Stable Monitoring in Sweat.
Cortisol, a steroid hormone, is closely associated with human mental stress. The rapid, real-time, and continuous detection of cortisol using wearable devices offers a promising approach for individual mental health. These devices must exhibit high sensitivity and long-term stability to ensure reliable performance. This study developed a wearable electrochemical sensor based on molecularly imprinted polymer (MIP) technology for real-time and dynamic monitoring of cortisol in sweat. A flexible gold (Au) electrode with interfacial hydrophilic treatment was employed to construct a highly stable electrode. The integration of a silk fibroin/polyvinylidene fluoride (SF/PVDF) composite membrane facilitates directional sweat transport, while liquid metal bonding enhances electrode flexibility and mechanical anti-delamination capability. The sensor exhibits an ultrawide detection range (0.1 pM to 5 μM), high selectivity (over 100-fold against interferents such as glucose and lactic acid), and long-term stability (less than 3.76% signal attenuation over 120 cycles). Additionally, a gradient modulus design was implemented to mitigate mechanical deformation interference under wearable conditions. As a flexible wearable device for cortisol monitoring in human sweat, the sensor's response closely aligns with the diurnal cortisol rhythm, offering a highly sensitive and interference-resistant wearable solution for mental health monitoring and advancing personalized dynamic assessment of stress-related disorders.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.