基于树枝状金纳米结构和聚苯胺-金纳米复合材料的葡萄糖生物传感器平台。

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Natalija German, Anton Popov, Arunas Ramanavicius, Almira Ramanaviciene
{"title":"基于树枝状金纳米结构和聚苯胺-金纳米复合材料的葡萄糖生物传感器平台。","authors":"Natalija German, Anton Popov, Arunas Ramanavicius, Almira Ramanaviciene","doi":"10.3390/bios15030196","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus is a pathological condition that requires continuous measurement of glucose concentration in human blood. In this study, two enzymatic mediator-free glucose biosensors based on premodified graphite rod (GR) electrodes were developed and compared. GR electrode modified with electrochemically synthesized dendritic gold nanostructures (DGNS), a cystamine (Cys) self-assembled monolayer (SAM), and glucose oxidase (GOx) (GR/DGNS/Cys/GOx) and GR electrode modified with DGNS, Cys SAM, enzymatically obtained polyaniline (PANI) nanocomposites with embedded 6 nm gold nanoparticles (AuNPs) and GOx (GR/DGNS/Cys/PANI-AuNPs-GOx/GOx) were investigated electrochemically. Biosensors based on GR/DGNS/Cys/GOx and GR/DGNS/Cys/PANI-AuNPs-GOx/GOx electrodes were characterized by a linear range (LR) of up to 1.0 mM of glucose, storage stability of over 71 days, sensitivity of 93.7 and 72.0 μA/(mM cm<sup>2</sup>), limit of detection (LOD) of 0.027 and 0.034 mM, reproducibility of 13.6 and 9.03%, and repeatability of 8.96 and 8.01%, respectively. The GR/DGNS/Cys/PANI-AuNPs-GOx/GOx electrode was proposed as more favorable for glucose concentration determination in serum due to its better stability and resistance to interfering electrochemically active species. The technological solutions presented in this paper are expected to enable the development of innovative mediator-free enzymatic glucose biosensors, offering advantages for clinical assays, particularly for controlling blood glucose concentration in individuals with diabetes.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940116/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Platform for the Glucose Biosensor Based on Dendritic Gold Nanostructures and Polyaniline-Gold Nanoparticles Nanocomposite.\",\"authors\":\"Natalija German, Anton Popov, Arunas Ramanavicius, Almira Ramanaviciene\",\"doi\":\"10.3390/bios15030196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus is a pathological condition that requires continuous measurement of glucose concentration in human blood. In this study, two enzymatic mediator-free glucose biosensors based on premodified graphite rod (GR) electrodes were developed and compared. GR electrode modified with electrochemically synthesized dendritic gold nanostructures (DGNS), a cystamine (Cys) self-assembled monolayer (SAM), and glucose oxidase (GOx) (GR/DGNS/Cys/GOx) and GR electrode modified with DGNS, Cys SAM, enzymatically obtained polyaniline (PANI) nanocomposites with embedded 6 nm gold nanoparticles (AuNPs) and GOx (GR/DGNS/Cys/PANI-AuNPs-GOx/GOx) were investigated electrochemically. Biosensors based on GR/DGNS/Cys/GOx and GR/DGNS/Cys/PANI-AuNPs-GOx/GOx electrodes were characterized by a linear range (LR) of up to 1.0 mM of glucose, storage stability of over 71 days, sensitivity of 93.7 and 72.0 μA/(mM cm<sup>2</sup>), limit of detection (LOD) of 0.027 and 0.034 mM, reproducibility of 13.6 and 9.03%, and repeatability of 8.96 and 8.01%, respectively. The GR/DGNS/Cys/PANI-AuNPs-GOx/GOx electrode was proposed as more favorable for glucose concentration determination in serum due to its better stability and resistance to interfering electrochemically active species. The technological solutions presented in this paper are expected to enable the development of innovative mediator-free enzymatic glucose biosensors, offering advantages for clinical assays, particularly for controlling blood glucose concentration in individuals with diabetes.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940116/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15030196\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15030196","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病是一种需要持续测量人体血液中葡萄糖浓度的病理状态。在本研究中,开发并比较了两种基于预修饰石墨棒(GR)电极的无酶介质葡萄糖生物传感器。研究了用电化学合成的树状金纳米结构(DGNS)、半胺(Cys)自组装单层结构(SAM)和葡萄糖氧化酶(GOx) (GR/DGNS/Cys/GOx)修饰的GR电极和用DGNS、Cys/ SAM修饰的GR电极,用酶促法制备了嵌入6 nm金纳米粒子(AuNPs)和GOx (GR/DGNS/Cys/PANI-AuNPs-GOx/GOx)的聚苯胺(PANI)纳米复合材料。基于GR/DGNS/Cys/GOx和GR/DGNS/Cys/PANI-AuNPs-GOx/GOx电极的生物传感器的线性范围(LR)为1.0 mM葡萄糖,存储稳定性超过71 d,灵敏度分别为93.7和72.0 μA/(mM cm2),检出限(LOD)分别为0.027和0.034 mM,重现性分别为13.6%和9.03%,重复性分别为8.96和8.01%。由于GR/DGNS/Cys/PANI-AuNPs-GOx/GOx电极具有更好的稳定性和对电化学活性物质干扰的抗性,因此更适合于血清中葡萄糖浓度的测定。本文提出的技术解决方案有望使创新的无介质酶促葡萄糖生物传感器的发展成为可能,为临床分析提供优势,特别是在糖尿病患者的血糖浓度控制方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Platform for the Glucose Biosensor Based on Dendritic Gold Nanostructures and Polyaniline-Gold Nanoparticles Nanocomposite.

Diabetes mellitus is a pathological condition that requires continuous measurement of glucose concentration in human blood. In this study, two enzymatic mediator-free glucose biosensors based on premodified graphite rod (GR) electrodes were developed and compared. GR electrode modified with electrochemically synthesized dendritic gold nanostructures (DGNS), a cystamine (Cys) self-assembled monolayer (SAM), and glucose oxidase (GOx) (GR/DGNS/Cys/GOx) and GR electrode modified with DGNS, Cys SAM, enzymatically obtained polyaniline (PANI) nanocomposites with embedded 6 nm gold nanoparticles (AuNPs) and GOx (GR/DGNS/Cys/PANI-AuNPs-GOx/GOx) were investigated electrochemically. Biosensors based on GR/DGNS/Cys/GOx and GR/DGNS/Cys/PANI-AuNPs-GOx/GOx electrodes were characterized by a linear range (LR) of up to 1.0 mM of glucose, storage stability of over 71 days, sensitivity of 93.7 and 72.0 μA/(mM cm2), limit of detection (LOD) of 0.027 and 0.034 mM, reproducibility of 13.6 and 9.03%, and repeatability of 8.96 and 8.01%, respectively. The GR/DGNS/Cys/PANI-AuNPs-GOx/GOx electrode was proposed as more favorable for glucose concentration determination in serum due to its better stability and resistance to interfering electrochemically active species. The technological solutions presented in this paper are expected to enable the development of innovative mediator-free enzymatic glucose biosensors, offering advantages for clinical assays, particularly for controlling blood glucose concentration in individuals with diabetes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信