血管疾病的植入式生物传感器:下一代主动诊断和治疗医疗设备技术的方向。

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Ali Mana Alyami, Mahmut Talha Kirimi, Steven L Neale, John R Mercer
{"title":"血管疾病的植入式生物传感器:下一代主动诊断和治疗医疗设备技术的方向。","authors":"Ali Mana Alyami, Mahmut Talha Kirimi, Steven L Neale, John R Mercer","doi":"10.3390/bios15030147","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Key challenges such as atherosclerosis, in-stent restenosis, and maintaining arteriovenous access, pose urgent problems for effective treatments for both coronary artery disease and chronic kidney disease. The next generation of active implantables will offer innovative solutions and research opportunities to reduce the economic and human cost of disease. Current treatments rely on vascular stents or synthetic implantable grafts to treat vessels when they block such as through in-stent restenosis and haemodialysis graft failure. This is often driven by vascular cell overgrowth termed neointimal hyperplasia, often in response to inflammation and injury. The integration of biosensors into existing approved implants will bring a revolution in cardiovascular devices and into a promising new era. Biosensors that allow real-time vascular monitoring will provide early detection and warning of pathological cell growth. This will enable proactive wireless treatment outside of the traditional hospital settings. Ongoing research focuses on the development of self-reporting smart cardiovascular devices, which have shown promising results using a combination of virtual in silico modelling, bench testing, and preclinical in vivo testing. This innovative approach holds the key to a new generation of wireless data solutions and wireless powered implants to enhance patient outcomes and alleviate the burden on global healthcare budgets.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940410/pdf/","citationCount":"0","resultStr":"{\"title\":\"Implantable Biosensors for Vascular Diseases: Directions for the Next Generation of Active Diagnostic and Therapeutic Medical Device Technologies.\",\"authors\":\"Ali Mana Alyami, Mahmut Talha Kirimi, Steven L Neale, John R Mercer\",\"doi\":\"10.3390/bios15030147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Key challenges such as atherosclerosis, in-stent restenosis, and maintaining arteriovenous access, pose urgent problems for effective treatments for both coronary artery disease and chronic kidney disease. The next generation of active implantables will offer innovative solutions and research opportunities to reduce the economic and human cost of disease. Current treatments rely on vascular stents or synthetic implantable grafts to treat vessels when they block such as through in-stent restenosis and haemodialysis graft failure. This is often driven by vascular cell overgrowth termed neointimal hyperplasia, often in response to inflammation and injury. The integration of biosensors into existing approved implants will bring a revolution in cardiovascular devices and into a promising new era. Biosensors that allow real-time vascular monitoring will provide early detection and warning of pathological cell growth. This will enable proactive wireless treatment outside of the traditional hospital settings. Ongoing research focuses on the development of self-reporting smart cardiovascular devices, which have shown promising results using a combination of virtual in silico modelling, bench testing, and preclinical in vivo testing. This innovative approach holds the key to a new generation of wireless data solutions and wireless powered implants to enhance patient outcomes and alleviate the burden on global healthcare budgets.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940410/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15030147\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15030147","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病仍然是全世界发病率和死亡率的主要原因。动脉粥样硬化、支架内再狭窄和维持动静脉通道等关键挑战,对冠状动脉疾病和慢性肾脏疾病的有效治疗提出了迫切的问题。下一代主动植入物将提供创新的解决方案和研究机会,以减少疾病的经济和人类成本。目前的治疗依赖于血管支架或人工植入式移植物来治疗血管阻塞,如通过支架内再狭窄和血液透析移植物失败。这通常是由血管细胞过度生长引起的,称为新生内膜增生,通常是对炎症和损伤的反应。将生物传感器集成到现有的已批准的植入物中,将给心血管设备带来一场革命,并进入一个充满希望的新时代。允许实时血管监测的生物传感器将提供病理细胞生长的早期检测和警告。这将使传统医院环境之外的主动无线治疗成为可能。正在进行的研究重点是开发自我报告的智能心血管设备,该设备使用虚拟计算机建模、台架测试和临床前体内测试相结合,显示出有希望的结果。这种创新方法是新一代无线数据解决方案和无线供电植入物的关键,可提高患者治疗效果并减轻全球医疗保健预算负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implantable Biosensors for Vascular Diseases: Directions for the Next Generation of Active Diagnostic and Therapeutic Medical Device Technologies.

Cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Key challenges such as atherosclerosis, in-stent restenosis, and maintaining arteriovenous access, pose urgent problems for effective treatments for both coronary artery disease and chronic kidney disease. The next generation of active implantables will offer innovative solutions and research opportunities to reduce the economic and human cost of disease. Current treatments rely on vascular stents or synthetic implantable grafts to treat vessels when they block such as through in-stent restenosis and haemodialysis graft failure. This is often driven by vascular cell overgrowth termed neointimal hyperplasia, often in response to inflammation and injury. The integration of biosensors into existing approved implants will bring a revolution in cardiovascular devices and into a promising new era. Biosensors that allow real-time vascular monitoring will provide early detection and warning of pathological cell growth. This will enable proactive wireless treatment outside of the traditional hospital settings. Ongoing research focuses on the development of self-reporting smart cardiovascular devices, which have shown promising results using a combination of virtual in silico modelling, bench testing, and preclinical in vivo testing. This innovative approach holds the key to a new generation of wireless data solutions and wireless powered implants to enhance patient outcomes and alleviate the burden on global healthcare budgets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信