Piyush Bhanu, Sakshi Buchke, Nisha Hemandhar-Kumar, Piyush Varsha, S K Ravi Kiran, G Vikneswaran, Arjun Alva, G S Basavaraj, Jitendra Kumar
{"title":"COVID-19患者与健康人群口腔微生物组比较宏基因组学分析","authors":"Piyush Bhanu, Sakshi Buchke, Nisha Hemandhar-Kumar, Piyush Varsha, S K Ravi Kiran, G Vikneswaran, Arjun Alva, G S Basavaraj, Jitendra Kumar","doi":"10.1038/s41598-024-81864-3","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19, caused by SARS-CoV-2, affects multiple body systems, including the oral cavity, where it may disrupt the oral microbiome in ways that contribute to disease pathology. Understanding the long-term interaction between SARS-CoV-2 and the oral microbiome is crucial, as it may reveal microbial markers valuable for diagnosing or monitoring persistent health issues in COVID-19 survivors. Metagenomic sequencing revealed significant microbial shifts in the oral microbiome of COVID-19 patients, showing reduced microbial diversity and increased prevalence of opportunistic pathogens compared to healthy individuals. Alpha diversity measures indicated lower microbial diversity and evenness, while beta diversity analyses demonstrated distinct microbial community compositions. Core microbiome analysis identified unique taxa in COVID-19 patients that may contribute to disease pathology, while differential abundance analysis highlighted specific taxa shifts, including an increase in potential pathogens. Our findings advance the understanding of microbial changes in the oral microbiome associated with COVID-19 and suggest potential targets for microbiome-based interventions. While these results indicate associations with possible health impacts, further research is needed to determine causative links and long-term implications for COVID-19 survivors. This foundational research highlights the potential for microbiome science to inform diagnostic tools, such as microbial markers for disease progression, and therapeutic approaches, including targeted probiotics, which could ultimately support better patient outcomes and public health strategies.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"10303"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937335/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative metagenomic analysis of the oral microbiome in COVID-19 patients and healthy individuals.\",\"authors\":\"Piyush Bhanu, Sakshi Buchke, Nisha Hemandhar-Kumar, Piyush Varsha, S K Ravi Kiran, G Vikneswaran, Arjun Alva, G S Basavaraj, Jitendra Kumar\",\"doi\":\"10.1038/s41598-024-81864-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>COVID-19, caused by SARS-CoV-2, affects multiple body systems, including the oral cavity, where it may disrupt the oral microbiome in ways that contribute to disease pathology. Understanding the long-term interaction between SARS-CoV-2 and the oral microbiome is crucial, as it may reveal microbial markers valuable for diagnosing or monitoring persistent health issues in COVID-19 survivors. Metagenomic sequencing revealed significant microbial shifts in the oral microbiome of COVID-19 patients, showing reduced microbial diversity and increased prevalence of opportunistic pathogens compared to healthy individuals. Alpha diversity measures indicated lower microbial diversity and evenness, while beta diversity analyses demonstrated distinct microbial community compositions. Core microbiome analysis identified unique taxa in COVID-19 patients that may contribute to disease pathology, while differential abundance analysis highlighted specific taxa shifts, including an increase in potential pathogens. Our findings advance the understanding of microbial changes in the oral microbiome associated with COVID-19 and suggest potential targets for microbiome-based interventions. While these results indicate associations with possible health impacts, further research is needed to determine causative links and long-term implications for COVID-19 survivors. This foundational research highlights the potential for microbiome science to inform diagnostic tools, such as microbial markers for disease progression, and therapeutic approaches, including targeted probiotics, which could ultimately support better patient outcomes and public health strategies.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"10303\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937335/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-81864-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-81864-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Comparative metagenomic analysis of the oral microbiome in COVID-19 patients and healthy individuals.
COVID-19, caused by SARS-CoV-2, affects multiple body systems, including the oral cavity, where it may disrupt the oral microbiome in ways that contribute to disease pathology. Understanding the long-term interaction between SARS-CoV-2 and the oral microbiome is crucial, as it may reveal microbial markers valuable for diagnosing or monitoring persistent health issues in COVID-19 survivors. Metagenomic sequencing revealed significant microbial shifts in the oral microbiome of COVID-19 patients, showing reduced microbial diversity and increased prevalence of opportunistic pathogens compared to healthy individuals. Alpha diversity measures indicated lower microbial diversity and evenness, while beta diversity analyses demonstrated distinct microbial community compositions. Core microbiome analysis identified unique taxa in COVID-19 patients that may contribute to disease pathology, while differential abundance analysis highlighted specific taxa shifts, including an increase in potential pathogens. Our findings advance the understanding of microbial changes in the oral microbiome associated with COVID-19 and suggest potential targets for microbiome-based interventions. While these results indicate associations with possible health impacts, further research is needed to determine causative links and long-term implications for COVID-19 survivors. This foundational research highlights the potential for microbiome science to inform diagnostic tools, such as microbial markers for disease progression, and therapeutic approaches, including targeted probiotics, which could ultimately support better patient outcomes and public health strategies.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.