硒对温室条件下黄瓜生长及白粉病防治的生物促进作用。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiaodi Xu, Zhangbo Chen, Wenru Wang, Kai Pan
{"title":"硒对温室条件下黄瓜生长及白粉病防治的生物促进作用。","authors":"Xiaodi Xu, Zhangbo Chen, Wenru Wang, Kai Pan","doi":"10.1038/s41598-025-95172-x","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we clarified the effects of selenium fertilizer application on the growth of cucumber, explored the impact of exogenous selenium on the control of powdery mildew and its pathogens. Selenium-enriched ionic fertilizer and cucumber were selected as the test materials. A one-way, randomized design was adopted to set up four selenium solutions with concentrations of 0 mg/L, 3 mg/L, 6 mg/L, and 12 mg/L to investigate the effects of biofortification with different amounts of selenium concentrations on the growth of cucumber and the occurrence of powdery mildew in greenhouses. A leaf inoculation test was conducted by setting up three groups of treatments: water and fungicide (seedling fungicide) as the control groups, and 6 mg/L selenium-enriched ionic fertilizer as the treatment group. These treatments were selected to investigate the effect of selenium on the control of powdery mildew in greenhouse-grown cucumbers as well as the effect of selenium on the germination of powdery mildew pathogen spores. The results demonstrated that both the 6 mg/L and 12 mg/L selenium-enriched ionic fertilizer solutions had growth-promoting and yield-increasing effects on cucumber and that the difference in the growth-promoting effects of these treatments was insignificant. The 3 mg/L, 6 mg/L, and 12 mg/L treatments improved the nutritional quality of cucumber fruits, reducing the total acidity of the fruits and increasing the content of soluble proteins in the fruits; the 6 mg/L and 12 mg/L treatments increased the content of selenium in the fruits, and the difference in selenium enrichment between the two treatments was not significant. The 6 mg/L selenium solution had the greatest effectiveness in alleviating leaf photosynthesis inhibition by the powdery mildew fungus, in mitigating powdery mildew damage and in reducing the plant disease index. The results of the leaf inoculation trials revealed that at a concentration of 6 mg/L, the effects of the selenium-enriched ionic fertilizer were comparable to those of pharmaceutical treatments for powdery mildew disease. The activities of superoxide dismutase and peroxidase in all treatments tended to increase but then decreased within 72 h after pathogen inoculation. Nevertheless, selenium fertilizer treatment inhibited the germination of powdery mildew pathogen conidia, the number of conidial germination shoot tubes and mycelium formation.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"10363"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937573/pdf/","citationCount":"0","resultStr":"{\"title\":\"The effect of selenium biological enhancement on cucumber growth and powdery mildew control under greenhouse conditions.\",\"authors\":\"Xiaodi Xu, Zhangbo Chen, Wenru Wang, Kai Pan\",\"doi\":\"10.1038/s41598-025-95172-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we clarified the effects of selenium fertilizer application on the growth of cucumber, explored the impact of exogenous selenium on the control of powdery mildew and its pathogens. Selenium-enriched ionic fertilizer and cucumber were selected as the test materials. A one-way, randomized design was adopted to set up four selenium solutions with concentrations of 0 mg/L, 3 mg/L, 6 mg/L, and 12 mg/L to investigate the effects of biofortification with different amounts of selenium concentrations on the growth of cucumber and the occurrence of powdery mildew in greenhouses. A leaf inoculation test was conducted by setting up three groups of treatments: water and fungicide (seedling fungicide) as the control groups, and 6 mg/L selenium-enriched ionic fertilizer as the treatment group. These treatments were selected to investigate the effect of selenium on the control of powdery mildew in greenhouse-grown cucumbers as well as the effect of selenium on the germination of powdery mildew pathogen spores. The results demonstrated that both the 6 mg/L and 12 mg/L selenium-enriched ionic fertilizer solutions had growth-promoting and yield-increasing effects on cucumber and that the difference in the growth-promoting effects of these treatments was insignificant. The 3 mg/L, 6 mg/L, and 12 mg/L treatments improved the nutritional quality of cucumber fruits, reducing the total acidity of the fruits and increasing the content of soluble proteins in the fruits; the 6 mg/L and 12 mg/L treatments increased the content of selenium in the fruits, and the difference in selenium enrichment between the two treatments was not significant. The 6 mg/L selenium solution had the greatest effectiveness in alleviating leaf photosynthesis inhibition by the powdery mildew fungus, in mitigating powdery mildew damage and in reducing the plant disease index. The results of the leaf inoculation trials revealed that at a concentration of 6 mg/L, the effects of the selenium-enriched ionic fertilizer were comparable to those of pharmaceutical treatments for powdery mildew disease. The activities of superoxide dismutase and peroxidase in all treatments tended to increase but then decreased within 72 h after pathogen inoculation. Nevertheless, selenium fertilizer treatment inhibited the germination of powdery mildew pathogen conidia, the number of conidial germination shoot tubes and mycelium formation.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"10363\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937573/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-95172-x\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95172-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究阐明了施用硒肥对黄瓜生长的影响,探讨了外源硒对黄瓜白粉病及其病原菌防治的影响。以富硒离子肥和黄瓜为试验材料。采用单因素随机设计,设置浓度为0 mg/L、3 mg/L、6 mg/L和12 mg/L的4种硒溶液,研究不同硒浓度生物强化对温室黄瓜生长和白粉病发生的影响。以水和杀菌剂(杀苗剂)为对照组,6 mg/L富硒离子肥为处理组,进行叶片接种试验。选择这些处理,研究硒对温室黄瓜白粉病的防治效果以及硒对白粉病病原菌孢子萌发的影响。结果表明,6 mg/L和12 mg/L富硒离子肥溶液对黄瓜均有促生长和增产作用,且促生长效果差异不显著。3mg /L、6mg /L和12mg /L处理改善了黄瓜果实的营养品质,降低了果实的总酸度,提高了果实中可溶性蛋白质的含量;6 mg/L和12 mg/L处理提高了果实中硒的含量,两处理硒的富集程度差异不显著。6 mg/L硒溶液在缓解白粉病真菌对叶片光合作用的抑制、减轻白粉病危害和降低植物病害指数方面效果最好。叶片接种试验结果表明,在浓度为6 mg/L时,富硒离子肥对白粉病的防治效果与药物处理相当。在接种病原菌72 h内,各处理的超氧化物歧化酶和过氧化物酶活性均呈先升高后降低的趋势。然而,硒肥处理抑制了白粉病病菌分生孢子的萌发、分生孢子萌发、芽管数量和菌丝形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The effect of selenium biological enhancement on cucumber growth and powdery mildew control under greenhouse conditions.

The effect of selenium biological enhancement on cucumber growth and powdery mildew control under greenhouse conditions.

The effect of selenium biological enhancement on cucumber growth and powdery mildew control under greenhouse conditions.

The effect of selenium biological enhancement on cucumber growth and powdery mildew control under greenhouse conditions.

In this study, we clarified the effects of selenium fertilizer application on the growth of cucumber, explored the impact of exogenous selenium on the control of powdery mildew and its pathogens. Selenium-enriched ionic fertilizer and cucumber were selected as the test materials. A one-way, randomized design was adopted to set up four selenium solutions with concentrations of 0 mg/L, 3 mg/L, 6 mg/L, and 12 mg/L to investigate the effects of biofortification with different amounts of selenium concentrations on the growth of cucumber and the occurrence of powdery mildew in greenhouses. A leaf inoculation test was conducted by setting up three groups of treatments: water and fungicide (seedling fungicide) as the control groups, and 6 mg/L selenium-enriched ionic fertilizer as the treatment group. These treatments were selected to investigate the effect of selenium on the control of powdery mildew in greenhouse-grown cucumbers as well as the effect of selenium on the germination of powdery mildew pathogen spores. The results demonstrated that both the 6 mg/L and 12 mg/L selenium-enriched ionic fertilizer solutions had growth-promoting and yield-increasing effects on cucumber and that the difference in the growth-promoting effects of these treatments was insignificant. The 3 mg/L, 6 mg/L, and 12 mg/L treatments improved the nutritional quality of cucumber fruits, reducing the total acidity of the fruits and increasing the content of soluble proteins in the fruits; the 6 mg/L and 12 mg/L treatments increased the content of selenium in the fruits, and the difference in selenium enrichment between the two treatments was not significant. The 6 mg/L selenium solution had the greatest effectiveness in alleviating leaf photosynthesis inhibition by the powdery mildew fungus, in mitigating powdery mildew damage and in reducing the plant disease index. The results of the leaf inoculation trials revealed that at a concentration of 6 mg/L, the effects of the selenium-enriched ionic fertilizer were comparable to those of pharmaceutical treatments for powdery mildew disease. The activities of superoxide dismutase and peroxidase in all treatments tended to increase but then decreased within 72 h after pathogen inoculation. Nevertheless, selenium fertilizer treatment inhibited the germination of powdery mildew pathogen conidia, the number of conidial germination shoot tubes and mycelium formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信