{"title":"一维光子晶体结构增强的无外磁场自旋电子太赫兹高场发射器。","authors":"Zehao Yang, Jiahui Li, Shaojie Liu, Zejun Ren, Mingxuan Zhang, Chunyan Geng, Xiufeng Han, Caihua Wan, Xiaojun Wu","doi":"10.1080/14686996.2025.2478816","DOIUrl":null,"url":null,"abstract":"<p><p>Intense terahertz (THz) radiation in free space offers multifaceted capabilities for accelerating electron, understanding the mesoscale architecture in (bio)materials, elementary excitation and so on. Recently popularized spintronic THz emitters (STEs) with their versatility such as ultra-broadband, large-size and ease-for-integration have become one of the most promising alternative for the next generation of intense THz sources. Nevertheless, the typical W | Co <math><msub><mi> </mi> <mrow><mn>20</mn></mrow> </msub> </math> Fe <math><msub><mi> </mi> <mrow><mn>60</mn></mrow> </msub> </math> B <math><msub><mi> </mi> <mrow><mn>20</mn></mrow> </msub> </math> | Pt necessitates an external-magnetic-field to saturate magnetization for stable operation, limiting its scalability for achieving higher THz field with uniform distribution over larger sample areas. Here we demonstrate the methodologies of enhancing the high-field THz radiation of external-magnetic-field-free IrMn <math><msub><mi> </mi> <mn>3</mn></msub> </math> | Co <math><msub><mi> </mi> <mrow><mn>20</mn></mrow> </msub> </math> Fe <math><msub><mi> </mi> <mrow><mn>60</mn></mrow> </msub> </math> B <math><msub><mi> </mi> <mrow><mn>20</mn></mrow> </msub> </math> | W trilayer heterostructure via optimizing the substrate with superior thermal conductivity and integrating a one-dimensional photonic crystal (PC) structure to maximize the radiation efficiency. Under the excitation of a 1 kHz Ti: sapphire femtosecond laser amplifier with central wavelength of 800 nm, pulse duration of 35 fs, and maximum single pulse energy of 5.5 mJ, we successfully generate intense THz radiation with focal peak electric field up to 650 kV/cm with frequency range covering 0.1-5.5 THz from MgO-coated sample without external-magnetic-fields. These high-field STEs will also enable other applications such as ultra-broadband high-field THz spectroscopy and polarization-based large-size strong-field THz imaging.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2478816"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934193/pdf/","citationCount":"0","resultStr":"{\"title\":\"One-dimensional photonic crystal structure enhanced external-magnetic-field-free spintronic terahertz high-field emitter.\",\"authors\":\"Zehao Yang, Jiahui Li, Shaojie Liu, Zejun Ren, Mingxuan Zhang, Chunyan Geng, Xiufeng Han, Caihua Wan, Xiaojun Wu\",\"doi\":\"10.1080/14686996.2025.2478816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intense terahertz (THz) radiation in free space offers multifaceted capabilities for accelerating electron, understanding the mesoscale architecture in (bio)materials, elementary excitation and so on. Recently popularized spintronic THz emitters (STEs) with their versatility such as ultra-broadband, large-size and ease-for-integration have become one of the most promising alternative for the next generation of intense THz sources. Nevertheless, the typical W | Co <math><msub><mi> </mi> <mrow><mn>20</mn></mrow> </msub> </math> Fe <math><msub><mi> </mi> <mrow><mn>60</mn></mrow> </msub> </math> B <math><msub><mi> </mi> <mrow><mn>20</mn></mrow> </msub> </math> | Pt necessitates an external-magnetic-field to saturate magnetization for stable operation, limiting its scalability for achieving higher THz field with uniform distribution over larger sample areas. Here we demonstrate the methodologies of enhancing the high-field THz radiation of external-magnetic-field-free IrMn <math><msub><mi> </mi> <mn>3</mn></msub> </math> | Co <math><msub><mi> </mi> <mrow><mn>20</mn></mrow> </msub> </math> Fe <math><msub><mi> </mi> <mrow><mn>60</mn></mrow> </msub> </math> B <math><msub><mi> </mi> <mrow><mn>20</mn></mrow> </msub> </math> | W trilayer heterostructure via optimizing the substrate with superior thermal conductivity and integrating a one-dimensional photonic crystal (PC) structure to maximize the radiation efficiency. Under the excitation of a 1 kHz Ti: sapphire femtosecond laser amplifier with central wavelength of 800 nm, pulse duration of 35 fs, and maximum single pulse energy of 5.5 mJ, we successfully generate intense THz radiation with focal peak electric field up to 650 kV/cm with frequency range covering 0.1-5.5 THz from MgO-coated sample without external-magnetic-fields. These high-field STEs will also enable other applications such as ultra-broadband high-field THz spectroscopy and polarization-based large-size strong-field THz imaging.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"26 1\",\"pages\":\"2478816\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934193/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2025.2478816\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2025.2478816","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
自由空间中的强太赫兹(THz)辐射为加速电子、理解(生物)材料中的中尺度结构、初等激发等提供了多方面的能力。近年来普及的自旋电子太赫兹发射器(STEs)以其超宽带、大尺寸和易于集成等多功能性成为下一代强太赫兹源最有希望的替代方案之一。然而,典型的w| Co 20 Fe 60 b20 | Pt需要外部磁场来饱和磁化才能稳定运行,这限制了其可扩展性,无法在更大的样品面积上实现均匀分布的高太赫兹场。本文展示了通过优化具有优越导热性的衬底和集成一维光子晶体(PC)结构来增强无外磁场IrMn 3 | Co 20 Fe 60 b20 | W三层异质结构的高场太赫兹辐射的方法,以最大限度地提高辐射效率。在中心波长为800 nm、脉冲持续时间为35 fs、最大单脉冲能量为5.5 mJ的1 kHz钛蓝宝石飞秒激光放大器的激励下,我们成功地在没有外加磁场的情况下,从mgo涂层样品中产生了焦峰值电场高达650 kV/cm、频率范围为0.1 ~ 5.5 THz的强太赫兹辐射。这些高场STEs还将支持其他应用,如超宽带高场太赫兹光谱和基于偏振的大尺寸强场太赫兹成像。
Intense terahertz (THz) radiation in free space offers multifaceted capabilities for accelerating electron, understanding the mesoscale architecture in (bio)materials, elementary excitation and so on. Recently popularized spintronic THz emitters (STEs) with their versatility such as ultra-broadband, large-size and ease-for-integration have become one of the most promising alternative for the next generation of intense THz sources. Nevertheless, the typical W | Co Fe B | Pt necessitates an external-magnetic-field to saturate magnetization for stable operation, limiting its scalability for achieving higher THz field with uniform distribution over larger sample areas. Here we demonstrate the methodologies of enhancing the high-field THz radiation of external-magnetic-field-free IrMn | Co Fe B | W trilayer heterostructure via optimizing the substrate with superior thermal conductivity and integrating a one-dimensional photonic crystal (PC) structure to maximize the radiation efficiency. Under the excitation of a 1 kHz Ti: sapphire femtosecond laser amplifier with central wavelength of 800 nm, pulse duration of 35 fs, and maximum single pulse energy of 5.5 mJ, we successfully generate intense THz radiation with focal peak electric field up to 650 kV/cm with frequency range covering 0.1-5.5 THz from MgO-coated sample without external-magnetic-fields. These high-field STEs will also enable other applications such as ultra-broadband high-field THz spectroscopy and polarization-based large-size strong-field THz imaging.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.