Thái X Bùi, Vinay Shekhar, Sophie Marc-Martin, Kevin Bellande, Joop E M Vermeer
{"title":"拟南芥侧根的空间调节需要一个严格调控的生长素信号传导景观。","authors":"Thái X Bùi, Vinay Shekhar, Sophie Marc-Martin, Kevin Bellande, Joop E M Vermeer","doi":"10.1111/ppl.70184","DOIUrl":null,"url":null,"abstract":"<p><p>In Arabidopsis thaliana, lateral root (LR) development requires spatial accommodation responses in overlying endodermal cells. This includes loss of cell volume whilst maintaining membrane integrity to allow the expansion of the underlying LR primordia (LRPs). These accommodation responses are regulated by auxin-mediated signaling, specifically through Aux/IAA proteins, involving IAA3/SHY2. Plants that express a stabilized version of SHY2 (shy2-2) in differentiated endodermal cells, CASP1<sub>pro</sub>::shy2-2 plants, fail to make LRs. Exogenous treatment with 1-naphthaleneacetic acid (NAA) was reported to partially restore LR formation in this spatial accommodation mutant. Using treatments with auxins having different transport properties, such as NAA, indole-3-acetic acid (IAA), and 2,4-dichlorophenoxyacetic acid (2,4-D), we assessed the ability of each auxin to rescue LR formation in CASP1<sub>pro</sub>::shy2-2 roots. This revealed that IAA is the most effective in partially restoring LR development, NAA is effective in inducing LRPs but cannot maintain their canonical phenotype, whereas 2,4-D induces non-controlled cell divisions. In addition, we show that in CASP1<sub>pro</sub>::shy2-2 roots, AUX1 appears to be repressed in the zone where oscillation of the auxin response has been described. Our study advances the understanding of auxin-regulated spatial accommodation mechanisms during LRP formation and highlights the complex interplay of auxin transport and signaling in bypassing the endodermal constraints.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70184"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tightly regulated auxin signaling landscape is required for spatial accommodation of lateral roots in Arabidopsis.\",\"authors\":\"Thái X Bùi, Vinay Shekhar, Sophie Marc-Martin, Kevin Bellande, Joop E M Vermeer\",\"doi\":\"10.1111/ppl.70184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In Arabidopsis thaliana, lateral root (LR) development requires spatial accommodation responses in overlying endodermal cells. This includes loss of cell volume whilst maintaining membrane integrity to allow the expansion of the underlying LR primordia (LRPs). These accommodation responses are regulated by auxin-mediated signaling, specifically through Aux/IAA proteins, involving IAA3/SHY2. Plants that express a stabilized version of SHY2 (shy2-2) in differentiated endodermal cells, CASP1<sub>pro</sub>::shy2-2 plants, fail to make LRs. Exogenous treatment with 1-naphthaleneacetic acid (NAA) was reported to partially restore LR formation in this spatial accommodation mutant. Using treatments with auxins having different transport properties, such as NAA, indole-3-acetic acid (IAA), and 2,4-dichlorophenoxyacetic acid (2,4-D), we assessed the ability of each auxin to rescue LR formation in CASP1<sub>pro</sub>::shy2-2 roots. This revealed that IAA is the most effective in partially restoring LR development, NAA is effective in inducing LRPs but cannot maintain their canonical phenotype, whereas 2,4-D induces non-controlled cell divisions. In addition, we show that in CASP1<sub>pro</sub>::shy2-2 roots, AUX1 appears to be repressed in the zone where oscillation of the auxin response has been described. Our study advances the understanding of auxin-regulated spatial accommodation mechanisms during LRP formation and highlights the complex interplay of auxin transport and signaling in bypassing the endodermal constraints.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 2\",\"pages\":\"e70184\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70184\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70184","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
A tightly regulated auxin signaling landscape is required for spatial accommodation of lateral roots in Arabidopsis.
In Arabidopsis thaliana, lateral root (LR) development requires spatial accommodation responses in overlying endodermal cells. This includes loss of cell volume whilst maintaining membrane integrity to allow the expansion of the underlying LR primordia (LRPs). These accommodation responses are regulated by auxin-mediated signaling, specifically through Aux/IAA proteins, involving IAA3/SHY2. Plants that express a stabilized version of SHY2 (shy2-2) in differentiated endodermal cells, CASP1pro::shy2-2 plants, fail to make LRs. Exogenous treatment with 1-naphthaleneacetic acid (NAA) was reported to partially restore LR formation in this spatial accommodation mutant. Using treatments with auxins having different transport properties, such as NAA, indole-3-acetic acid (IAA), and 2,4-dichlorophenoxyacetic acid (2,4-D), we assessed the ability of each auxin to rescue LR formation in CASP1pro::shy2-2 roots. This revealed that IAA is the most effective in partially restoring LR development, NAA is effective in inducing LRPs but cannot maintain their canonical phenotype, whereas 2,4-D induces non-controlled cell divisions. In addition, we show that in CASP1pro::shy2-2 roots, AUX1 appears to be repressed in the zone where oscillation of the auxin response has been described. Our study advances the understanding of auxin-regulated spatial accommodation mechanisms during LRP formation and highlights the complex interplay of auxin transport and signaling in bypassing the endodermal constraints.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.