Dmitry N Pelageev, Yuri E Sabutski, Svetlana M Kovach, Nadezhda N Balaneva, Ekaterina S Menchinskaya, Ekaterina A Chingizova, Anna L Burylova, Victor Ph Anufriev
{"title":"基于硫卡平的糖基噻唑基二硫化物的合成及生物活性研究。硫卡平是海鞘细胞毒性生物碱聚carpine的类似物。","authors":"Dmitry N Pelageev, Yuri E Sabutski, Svetlana M Kovach, Nadezhda N Balaneva, Ekaterina S Menchinskaya, Ekaterina A Chingizova, Anna L Burylova, Victor Ph Anufriev","doi":"10.3390/md23030117","DOIUrl":null,"url":null,"abstract":"<p><p>Polycarpine, a diimidazolyl disulfan alkaloid isolated from the ascidian <i>Polycarpa aurata</i>, showed high cytotoxic activity in vitro. However, in vivo experiments have shown that polycarpine has a high acute toxicity. At the same time, its synthetic thiazolyl analog, thiacarpine, showed less acute toxicity and had a greater therapeutic index, which makes its derivatives promising for further drug development. We assume that due to the presence of a disulfide bond in the molecules of polycarpine and thiacarpine and the possibility of its reduction in a living cell, the mercapto derivatives formed are responsible for the high activity of the original compounds. Based on this assumption, and to increase the selectivity of action, glycosyl disulfide conjugates of thiacarpine derivatives with thioglucose and thioxylose were synthesized and screened for their cytotoxic and antimicrobial activities. The target compounds did not show hemolytic activity at concentrations of up to 25 μM. Some of them exhibited moderate cytotoxic activity, blocked colony growth and migration of HeLa tumor cells, high antimicrobial activity, and inhibited biofilm formation comparable to or higher than that of a standard antibiotic (gentamicin) and antimycotic (nitrofungin).</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943723/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Biological Activity of Glycosyl Thiazolyl Disulfides Based on Thiacarpine, an Analogue of the Cytotoxic Alkaloid Polycarpine from the Ascidian <i>Polycarpa aurata</i>.\",\"authors\":\"Dmitry N Pelageev, Yuri E Sabutski, Svetlana M Kovach, Nadezhda N Balaneva, Ekaterina S Menchinskaya, Ekaterina A Chingizova, Anna L Burylova, Victor Ph Anufriev\",\"doi\":\"10.3390/md23030117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polycarpine, a diimidazolyl disulfan alkaloid isolated from the ascidian <i>Polycarpa aurata</i>, showed high cytotoxic activity in vitro. However, in vivo experiments have shown that polycarpine has a high acute toxicity. At the same time, its synthetic thiazolyl analog, thiacarpine, showed less acute toxicity and had a greater therapeutic index, which makes its derivatives promising for further drug development. We assume that due to the presence of a disulfide bond in the molecules of polycarpine and thiacarpine and the possibility of its reduction in a living cell, the mercapto derivatives formed are responsible for the high activity of the original compounds. Based on this assumption, and to increase the selectivity of action, glycosyl disulfide conjugates of thiacarpine derivatives with thioglucose and thioxylose were synthesized and screened for their cytotoxic and antimicrobial activities. The target compounds did not show hemolytic activity at concentrations of up to 25 μM. Some of them exhibited moderate cytotoxic activity, blocked colony growth and migration of HeLa tumor cells, high antimicrobial activity, and inhibited biofilm formation comparable to or higher than that of a standard antibiotic (gentamicin) and antimycotic (nitrofungin).</p>\",\"PeriodicalId\":18222,\"journal\":{\"name\":\"Marine Drugs\",\"volume\":\"23 3\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943723/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/md23030117\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23030117","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Synthesis and Biological Activity of Glycosyl Thiazolyl Disulfides Based on Thiacarpine, an Analogue of the Cytotoxic Alkaloid Polycarpine from the Ascidian Polycarpa aurata.
Polycarpine, a diimidazolyl disulfan alkaloid isolated from the ascidian Polycarpa aurata, showed high cytotoxic activity in vitro. However, in vivo experiments have shown that polycarpine has a high acute toxicity. At the same time, its synthetic thiazolyl analog, thiacarpine, showed less acute toxicity and had a greater therapeutic index, which makes its derivatives promising for further drug development. We assume that due to the presence of a disulfide bond in the molecules of polycarpine and thiacarpine and the possibility of its reduction in a living cell, the mercapto derivatives formed are responsible for the high activity of the original compounds. Based on this assumption, and to increase the selectivity of action, glycosyl disulfide conjugates of thiacarpine derivatives with thioglucose and thioxylose were synthesized and screened for their cytotoxic and antimicrobial activities. The target compounds did not show hemolytic activity at concentrations of up to 25 μM. Some of them exhibited moderate cytotoxic activity, blocked colony growth and migration of HeLa tumor cells, high antimicrobial activity, and inhibited biofilm formation comparable to or higher than that of a standard antibiotic (gentamicin) and antimycotic (nitrofungin).
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.