鲁姆伊弧菌的多功能海藻酸解酶AlgVR7:结构见解和催化机制。

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL
Marine Drugs Pub Date : 2025-03-13 DOI:10.3390/md23030124
Zhe Huang, Shuai Liang, Wulong Jiang, Li Wang, Yuan Wang, Hua Wang, Lianshun Wang, Yuting Cong, Yanan Lu, Guojun Yang
{"title":"鲁姆伊弧菌的多功能海藻酸解酶AlgVR7:结构见解和催化机制。","authors":"Zhe Huang, Shuai Liang, Wulong Jiang, Li Wang, Yuan Wang, Hua Wang, Lianshun Wang, Yuting Cong, Yanan Lu, Guojun Yang","doi":"10.3390/md23030124","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we identified <i>AlgVR7</i>, a novel bifunctional alginate lyase from <i>Vibrio rumoiensis</i> and characterized its biochemical properties and substrate specificity. Sequence alignment analysis inferred the key residues K267, H162, N86, E189, and T244 for <i>AlgVR7</i> catalysis, and it is derived from the PL7 family; exhibited high activity towards sodium alginate, polyM (PM), and polyG (PG); and can also degrade polygalacturonic acid (PGA) efficiently, with the highest affinity and catalytic efficiency for the MG block of the substrate. The optimal temperature and pH for <i>AlgVR7</i> were determined to be 40 °C and pH 8, respectively. The enzyme activity of <i>AlgVR7</i> was maximum at 40 °C, 40% of the enzyme activity was retained after incubation at 60 °C for 60 min, and enzyme activity was still present after 60 min incubation. <i>AlgVR7</i> activity was stimulated by 100 Mm NaCl, indicating a halophilic nature and suitability for marine environments. Degradation products analyzed using ESI-MS revealed that the enzyme primarily produced trisaccharides and tetrasaccharides. At 40 °C and pH 8.0, its <i>K</i><sub>m</sub> values for sodium alginate, PM, and PG were 16.67 μmol, 13.12 μmol, and 22.86 μmol, respectively. Structural analysis and molecular docking studies unveiled the key catalytic residues involved in substrate recognition and interaction. Glu167 was identified as a critical residue for the PL7_5 subfamily, uniquely playing an essential role in alginate decomposition. Overall, <i>AlgVR7</i> exhibits great potential as a powerful bifunctional enzyme for the efficient preparation of alginate oligosaccharides, with promising applications in biotechnology and industrial fields.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943690/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-Functional Alginate Lyase <i>AlgVR7</i> from <i>Vibrio rumoiensis</i>: Structural Insights and Catalytic Mechanisms.\",\"authors\":\"Zhe Huang, Shuai Liang, Wulong Jiang, Li Wang, Yuan Wang, Hua Wang, Lianshun Wang, Yuting Cong, Yanan Lu, Guojun Yang\",\"doi\":\"10.3390/md23030124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we identified <i>AlgVR7</i>, a novel bifunctional alginate lyase from <i>Vibrio rumoiensis</i> and characterized its biochemical properties and substrate specificity. Sequence alignment analysis inferred the key residues K267, H162, N86, E189, and T244 for <i>AlgVR7</i> catalysis, and it is derived from the PL7 family; exhibited high activity towards sodium alginate, polyM (PM), and polyG (PG); and can also degrade polygalacturonic acid (PGA) efficiently, with the highest affinity and catalytic efficiency for the MG block of the substrate. The optimal temperature and pH for <i>AlgVR7</i> were determined to be 40 °C and pH 8, respectively. The enzyme activity of <i>AlgVR7</i> was maximum at 40 °C, 40% of the enzyme activity was retained after incubation at 60 °C for 60 min, and enzyme activity was still present after 60 min incubation. <i>AlgVR7</i> activity was stimulated by 100 Mm NaCl, indicating a halophilic nature and suitability for marine environments. Degradation products analyzed using ESI-MS revealed that the enzyme primarily produced trisaccharides and tetrasaccharides. At 40 °C and pH 8.0, its <i>K</i><sub>m</sub> values for sodium alginate, PM, and PG were 16.67 μmol, 13.12 μmol, and 22.86 μmol, respectively. Structural analysis and molecular docking studies unveiled the key catalytic residues involved in substrate recognition and interaction. Glu167 was identified as a critical residue for the PL7_5 subfamily, uniquely playing an essential role in alginate decomposition. Overall, <i>AlgVR7</i> exhibits great potential as a powerful bifunctional enzyme for the efficient preparation of alginate oligosaccharides, with promising applications in biotechnology and industrial fields.</p>\",\"PeriodicalId\":18222,\"journal\":{\"name\":\"Marine Drugs\",\"volume\":\"23 3\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943690/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/md23030124\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23030124","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们从鲁默伊弧菌中鉴定了一种新的双功能海藻酸解酶AlgVR7,并对其生化特性和底物特异性进行了表征。序列比对分析发现AlgVR7催化作用的关键残基为K267、H162、N86、E189和T244,来源于PL7家族;对海藻酸钠、polyM (PM)、polyG (PG)具有较高的活性;还能高效降解聚半乳糖醛酸(PGA),对底物的MG块具有最高的亲和力和催化效率。确定了AlgVR7的最佳温度为40℃,pH为8。AlgVR7在40℃时酶活性最高,60℃孵育60 min后酶活性仍保持40%,60 min后酶活性仍存在。100mm NaCl刺激AlgVR7活性,表明其嗜盐性,适合海洋环境。ESI-MS分析表明,该酶主要产生三糖和四糖。在40℃和pH 8.0条件下,其对海藻酸钠、PM和PG的Km值分别为16.67 μmol、13.12 μmol和22.86 μmol。结构分析和分子对接研究揭示了参与底物识别和相互作用的关键催化残基。Glu167被鉴定为PL7_5亚家族的一个关键残基,在海藻酸盐分解中发挥着独特的重要作用。综上所述,AlgVR7作为一种高效制备海藻酸盐低聚糖的双功能酶具有很大的潜力,在生物技术和工业领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Functional Alginate Lyase AlgVR7 from Vibrio rumoiensis: Structural Insights and Catalytic Mechanisms.

In this study, we identified AlgVR7, a novel bifunctional alginate lyase from Vibrio rumoiensis and characterized its biochemical properties and substrate specificity. Sequence alignment analysis inferred the key residues K267, H162, N86, E189, and T244 for AlgVR7 catalysis, and it is derived from the PL7 family; exhibited high activity towards sodium alginate, polyM (PM), and polyG (PG); and can also degrade polygalacturonic acid (PGA) efficiently, with the highest affinity and catalytic efficiency for the MG block of the substrate. The optimal temperature and pH for AlgVR7 were determined to be 40 °C and pH 8, respectively. The enzyme activity of AlgVR7 was maximum at 40 °C, 40% of the enzyme activity was retained after incubation at 60 °C for 60 min, and enzyme activity was still present after 60 min incubation. AlgVR7 activity was stimulated by 100 Mm NaCl, indicating a halophilic nature and suitability for marine environments. Degradation products analyzed using ESI-MS revealed that the enzyme primarily produced trisaccharides and tetrasaccharides. At 40 °C and pH 8.0, its Km values for sodium alginate, PM, and PG were 16.67 μmol, 13.12 μmol, and 22.86 μmol, respectively. Structural analysis and molecular docking studies unveiled the key catalytic residues involved in substrate recognition and interaction. Glu167 was identified as a critical residue for the PL7_5 subfamily, uniquely playing an essential role in alginate decomposition. Overall, AlgVR7 exhibits great potential as a powerful bifunctional enzyme for the efficient preparation of alginate oligosaccharides, with promising applications in biotechnology and industrial fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信