视频尿动力学预测脊柱裂患者肾积水的机器学习分析。

IF 5.9 2区 医学 Q1 UROLOGY & NEPHROLOGY
Journal of Urology Pub Date : 2025-07-01 Epub Date: 2025-03-25 DOI:10.1097/JU.0000000000004547
John K Weaver, Joseph Logan, Jason P Van Batavia, Dana A Weiss, Christopher J Long, Ariana L Smith, Stephen A Zderic, Zoe Gan, Karl Godlewski, Reiley Broms, Maria Antony, Maya Overland, Tyler Gaines, Dennis Head, Lauren Erdman, Bernarda Viteri, Madalyne Martin-Olenski, Jing Huang, Yong Fan, Gregory E Tasian
{"title":"视频尿动力学预测脊柱裂患者肾积水的机器学习分析。","authors":"John K Weaver, Joseph Logan, Jason P Van Batavia, Dana A Weiss, Christopher J Long, Ariana L Smith, Stephen A Zderic, Zoe Gan, Karl Godlewski, Reiley Broms, Maria Antony, Maya Overland, Tyler Gaines, Dennis Head, Lauren Erdman, Bernarda Viteri, Madalyne Martin-Olenski, Jing Huang, Yong Fan, Gregory E Tasian","doi":"10.1097/JU.0000000000004547","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Variability in the interpretation of videourodynamics studies limits reliable classification of kidney injury risk for patients with spina bifida. We developed machine learning models to predict incident hydronephrosis in patients with spina bifida using videourodynamics data.</p><p><strong>Materials and methods: </strong>We trained machine learning models using data from videourodynamics studies performed between 2016 and 2022 on patients with spina bifida aged 2 months to 42 years. We evaluated the performance of 4 models to predict incident hydronephrosis following an index videourodynamics study: (1) random survival forest model using data prospectively abstracted from videourodynamics studies by urologists, (2) random survival forest of bladder volume-pressure data, (3) random survival forest using deep learning features extracted from fluoroscopic images of the bladder, (4) ensemble model averaging the probabilities of the volume-pressure and fluoroscopic models.</p><p><strong>Results: </strong>We included 354 and 200 patients in the training and validation cohorts, respectively. Among the training and validation cohorts, 89 (25.1%) and 71 (35.5%) patients developed incident hydronephrosis at a median time of 1.6 (IQR, 0.5-3) and 2.49 (IQR, 1.72-3.03) years after the index videourodynamics study, respectively. The ensemble model that included data from studies during which ≥ 75% expected bladder capacity was reached had the best discrimination (C statistic 0.73; 95% CI, 0.68-0.76). The specificity of high-risk scores (top 10% in the ensemble model) was 97%.</p><p><strong>Conclusions: </strong>Automated extraction of features from pressure/volume recordings and fluoroscopic images of the bladder predicted incident hydronephrosis in patients with spina bifida.</p>","PeriodicalId":17471,"journal":{"name":"Journal of Urology","volume":" ","pages":"80-89"},"PeriodicalIF":5.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Analysis of Videourodynamics to Predict Incident Hydronephrosis in Patients With Spina Bifida.\",\"authors\":\"John K Weaver, Joseph Logan, Jason P Van Batavia, Dana A Weiss, Christopher J Long, Ariana L Smith, Stephen A Zderic, Zoe Gan, Karl Godlewski, Reiley Broms, Maria Antony, Maya Overland, Tyler Gaines, Dennis Head, Lauren Erdman, Bernarda Viteri, Madalyne Martin-Olenski, Jing Huang, Yong Fan, Gregory E Tasian\",\"doi\":\"10.1097/JU.0000000000004547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Variability in the interpretation of videourodynamics studies limits reliable classification of kidney injury risk for patients with spina bifida. We developed machine learning models to predict incident hydronephrosis in patients with spina bifida using videourodynamics data.</p><p><strong>Materials and methods: </strong>We trained machine learning models using data from videourodynamics studies performed between 2016 and 2022 on patients with spina bifida aged 2 months to 42 years. We evaluated the performance of 4 models to predict incident hydronephrosis following an index videourodynamics study: (1) random survival forest model using data prospectively abstracted from videourodynamics studies by urologists, (2) random survival forest of bladder volume-pressure data, (3) random survival forest using deep learning features extracted from fluoroscopic images of the bladder, (4) ensemble model averaging the probabilities of the volume-pressure and fluoroscopic models.</p><p><strong>Results: </strong>We included 354 and 200 patients in the training and validation cohorts, respectively. Among the training and validation cohorts, 89 (25.1%) and 71 (35.5%) patients developed incident hydronephrosis at a median time of 1.6 (IQR, 0.5-3) and 2.49 (IQR, 1.72-3.03) years after the index videourodynamics study, respectively. The ensemble model that included data from studies during which ≥ 75% expected bladder capacity was reached had the best discrimination (C statistic 0.73; 95% CI, 0.68-0.76). The specificity of high-risk scores (top 10% in the ensemble model) was 97%.</p><p><strong>Conclusions: </strong>Automated extraction of features from pressure/volume recordings and fluoroscopic images of the bladder predicted incident hydronephrosis in patients with spina bifida.</p>\",\"PeriodicalId\":17471,\"journal\":{\"name\":\"Journal of Urology\",\"volume\":\" \",\"pages\":\"80-89\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Urology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/JU.0000000000004547\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Urology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/JU.0000000000004547","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:视频尿动力学研究解释的可变性限制了脊柱裂患者肾损伤风险的可靠分类。我们开发了机器学习模型,利用视频尿动力学数据预测脊柱裂患者的肾积水事件。方法:我们使用2016年至2022年间对2个月至42岁的脊柱裂患者进行的视频尿动力学研究数据训练机器学习模型。通过一项指数视频尿动力学研究,我们评估了四种模型预测事件性肾积水的性能:1)随机生存森林模型,使用泌尿科医生从视频尿动力学研究中前瞻性提取的数据;2)膀胱容积压力数据的随机生存森林;3)从膀胱透视图像中提取的深度学习特征的随机生存森林;4)容积压力和透视模型的概率平均的集合模型。结果:我们在训练和验证队列中分别纳入了354例和200例患者。在训练组和验证组中,分别有89例(25.1%)和71例(35.5%)患者在指数视频尿动力学研究后的中位时间为1.6年(IQR为0.5,3)和2.49年(IQR为1.72,3.03)发生了急性肾积水。纳入≥75%预期膀胱容量的研究数据的集合模型具有最好的判别性(c统计量0.73;95% ci 0.68-0.76)。高危评分(综合模型前10%)的特异性为97%。结论:从膀胱压力/容积记录和透视图像中自动提取特征可预测脊柱裂患者发生肾积水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Analysis of Videourodynamics to Predict Incident Hydronephrosis in Patients With Spina Bifida.

Purpose: Variability in the interpretation of videourodynamics studies limits reliable classification of kidney injury risk for patients with spina bifida. We developed machine learning models to predict incident hydronephrosis in patients with spina bifida using videourodynamics data.

Materials and methods: We trained machine learning models using data from videourodynamics studies performed between 2016 and 2022 on patients with spina bifida aged 2 months to 42 years. We evaluated the performance of 4 models to predict incident hydronephrosis following an index videourodynamics study: (1) random survival forest model using data prospectively abstracted from videourodynamics studies by urologists, (2) random survival forest of bladder volume-pressure data, (3) random survival forest using deep learning features extracted from fluoroscopic images of the bladder, (4) ensemble model averaging the probabilities of the volume-pressure and fluoroscopic models.

Results: We included 354 and 200 patients in the training and validation cohorts, respectively. Among the training and validation cohorts, 89 (25.1%) and 71 (35.5%) patients developed incident hydronephrosis at a median time of 1.6 (IQR, 0.5-3) and 2.49 (IQR, 1.72-3.03) years after the index videourodynamics study, respectively. The ensemble model that included data from studies during which ≥ 75% expected bladder capacity was reached had the best discrimination (C statistic 0.73; 95% CI, 0.68-0.76). The specificity of high-risk scores (top 10% in the ensemble model) was 97%.

Conclusions: Automated extraction of features from pressure/volume recordings and fluoroscopic images of the bladder predicted incident hydronephrosis in patients with spina bifida.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Urology
Journal of Urology 医学-泌尿学与肾脏学
CiteScore
11.50
自引率
7.60%
发文量
3746
审稿时长
2-3 weeks
期刊介绍: The Official Journal of the American Urological Association (AUA), and the most widely read and highly cited journal in the field, The Journal of Urology® brings solid coverage of the clinically relevant content needed to stay at the forefront of the dynamic field of urology. This premier journal presents investigative studies on critical areas of research and practice, survey articles providing short condensations of the best and most important urology literature worldwide, and practice-oriented reports on significant clinical observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信