霍夫曼型超宽带隙半导体材料的第一性原理研究。

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jie Liu, Qiangqiang Qiao, Jinsen Zhang, Ziang Ren, Shihui Zou, Yujing Liu, Jianmin Luo, Huadong Yuan, Jianwei Nai, Yao Wang, Xinyong Tao
{"title":"霍夫曼型超宽带隙半导体材料的第一性原理研究。","authors":"Jie Liu, Qiangqiang Qiao, Jinsen Zhang, Ziang Ren, Shihui Zou, Yujing Liu, Jianmin Luo, Huadong Yuan, Jianwei Nai, Yao Wang, Xinyong Tao","doi":"10.1088/1361-6528/adc4f0","DOIUrl":null,"url":null,"abstract":"<p><p>A novel Hoffmann-type metal-organic framework ultra-wide bandgap semiconductor material, {Ni(DMA)<sub>2</sub>[Ni(CN)<sub>4</sub>]}(DMA denotes dimethylamine), has been predicted. The material has been named Ni-DMA-Ni, and its structure, stability, electronic, mechanical, optical, and transport properties have been investigated by first-principles simulations. The calculation results demonstrate that Ni-DMA-Ni exhibits excellent thermal and dynamics stability at room temperature, with a bandgap value as high as 4.89 eV and the light absorption capacity reaches 10<sup>5</sup>cm<sup>-1</sup>level in the deep ultraviolet region. The Young's modulus is 27.94 GPa, and the shear modulus is 10.82 GPa, indicating mechanical anisotropy. In addition, the construction of a two-probe device utilizing Ni-DMA-Ni to evaluate its transport properties revealed a negative differential resistance effect in its<i>I</i>-<i>V</i>characteristic curve. These unique properties highlight the potential application of the Ni-DMA-Ni material in the deep ultraviolet optoelectronic field. This study provides novel concepts and contributes significant insights to the research of Hoffmann-type semiconductor materials in the field of optoelectronic devices.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A first-principles study of Hoffmann-type ultra-wide bandgap semiconductor material.\",\"authors\":\"Jie Liu, Qiangqiang Qiao, Jinsen Zhang, Ziang Ren, Shihui Zou, Yujing Liu, Jianmin Luo, Huadong Yuan, Jianwei Nai, Yao Wang, Xinyong Tao\",\"doi\":\"10.1088/1361-6528/adc4f0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel Hoffmann-type metal-organic framework ultra-wide bandgap semiconductor material, {Ni(DMA)<sub>2</sub>[Ni(CN)<sub>4</sub>]}(DMA denotes dimethylamine), has been predicted. The material has been named Ni-DMA-Ni, and its structure, stability, electronic, mechanical, optical, and transport properties have been investigated by first-principles simulations. The calculation results demonstrate that Ni-DMA-Ni exhibits excellent thermal and dynamics stability at room temperature, with a bandgap value as high as 4.89 eV and the light absorption capacity reaches 10<sup>5</sup>cm<sup>-1</sup>level in the deep ultraviolet region. The Young's modulus is 27.94 GPa, and the shear modulus is 10.82 GPa, indicating mechanical anisotropy. In addition, the construction of a two-probe device utilizing Ni-DMA-Ni to evaluate its transport properties revealed a negative differential resistance effect in its<i>I</i>-<i>V</i>characteristic curve. These unique properties highlight the potential application of the Ni-DMA-Ni material in the deep ultraviolet optoelectronic field. This study provides novel concepts and contributes significant insights to the research of Hoffmann-type semiconductor materials in the field of optoelectronic devices.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/adc4f0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adc4f0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

预测了一种新型的霍夫曼型金属有机骨架超宽带隙半导体材料{Ni(DMA)2[Ni(CN)4]}(DMA表示二甲胺)。这种材料被命名为Ni-DMA-Ni,其结构、稳定性、电子、机械、光学和输运性质已经通过第一性原理模拟进行了研究。计算结果表明,Ni-DMA-Ni在室温下具有良好的热稳定性和动力学稳定性,带隙值高达4.89 eV,在深紫外区吸收能力达到105 cm⁻¹级。杨氏模量为27.94 GPa,剪切模量为10.82 GPa,表现出力学各向异性。此外,利用Ni-DMA-Ni构建双探针器件来评估其输运特性,发现其I-V特性曲线存在负差分电阻效应。这些独特的性能突出了Ni-DMA-Ni材料在深紫外光电领域的潜在应用。本研究为光电器件领域的霍夫曼型半导体材料的研究提供了新的概念和重要的见解。 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A first-principles study of Hoffmann-type ultra-wide bandgap semiconductor material.

A novel Hoffmann-type metal-organic framework ultra-wide bandgap semiconductor material, {Ni(DMA)2[Ni(CN)4]}(DMA denotes dimethylamine), has been predicted. The material has been named Ni-DMA-Ni, and its structure, stability, electronic, mechanical, optical, and transport properties have been investigated by first-principles simulations. The calculation results demonstrate that Ni-DMA-Ni exhibits excellent thermal and dynamics stability at room temperature, with a bandgap value as high as 4.89 eV and the light absorption capacity reaches 105cm-1level in the deep ultraviolet region. The Young's modulus is 27.94 GPa, and the shear modulus is 10.82 GPa, indicating mechanical anisotropy. In addition, the construction of a two-probe device utilizing Ni-DMA-Ni to evaluate its transport properties revealed a negative differential resistance effect in itsI-Vcharacteristic curve. These unique properties highlight the potential application of the Ni-DMA-Ni material in the deep ultraviolet optoelectronic field. This study provides novel concepts and contributes significant insights to the research of Hoffmann-type semiconductor materials in the field of optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信