牙科洞察:单壁和多壁碳纳米管,碳点,和混合材料的兴起。

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Roxana-Ionela Vasluianu, Ana Maria Dima, Livia Bobu, Alice Murariu, Ovidiu Stamatin, Elena-Raluca Baciu, Elena-Odette Luca
{"title":"牙科洞察:单壁和多壁碳纳米管,碳点,和混合材料的兴起。","authors":"Roxana-Ionela Vasluianu, Ana Maria Dima, Livia Bobu, Alice Murariu, Ovidiu Stamatin, Elena-Raluca Baciu, Elena-Odette Luca","doi":"10.3390/jfb16030110","DOIUrl":null,"url":null,"abstract":"<p><p>We are committed to writing this narrative review given that carbon-based nanomaterials are revolutionizing dental medicine. Since the groundbreaking discovery of carbon nanotubes in 1991, their dental applications have skyrocketed. The numbers speak for themselves: in 2024, the global carbon nanotubes market hit USD 1.3 billion and is set to double to USD 2.6 billion by 2029. Over the past few decades, various forms of carbon nanomaterials have been integrated into dental practices, elevating the quality and effectiveness of dental treatments. They represent a transformative advancement in dentistry, offering numerous benefits such as augmented mechanical properties, antimicrobial activity, and potential for regenerative applications. Both carbon nanotubes (CNTs) and carbon dots (CDs) are derived from carbon and integral to nanotechnology, showcasing the versatility of carbon nanostructures and delivering cutting-edge solutions across diverse domains, such as electronics, materials science, and biomedicine. CNTs are ambitiously examined for their capability to reinforce dental materials, develop biosensors for detecting oral diseases, and even deliver therapeutic agents directly to affected tissues. This review synthesizes their current applications, underscores their interdisciplinary value in bridging nanotechnology and dentistry, identifies key barriers to clinical adoption, and discusses hybrid strategies warranting further research to advance implementation.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 3","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942805/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dentistry Insights: Single-Walled and Multi-Walled Carbon Nanotubes, Carbon Dots, and the Rise of Hybrid Materials.\",\"authors\":\"Roxana-Ionela Vasluianu, Ana Maria Dima, Livia Bobu, Alice Murariu, Ovidiu Stamatin, Elena-Raluca Baciu, Elena-Odette Luca\",\"doi\":\"10.3390/jfb16030110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We are committed to writing this narrative review given that carbon-based nanomaterials are revolutionizing dental medicine. Since the groundbreaking discovery of carbon nanotubes in 1991, their dental applications have skyrocketed. The numbers speak for themselves: in 2024, the global carbon nanotubes market hit USD 1.3 billion and is set to double to USD 2.6 billion by 2029. Over the past few decades, various forms of carbon nanomaterials have been integrated into dental practices, elevating the quality and effectiveness of dental treatments. They represent a transformative advancement in dentistry, offering numerous benefits such as augmented mechanical properties, antimicrobial activity, and potential for regenerative applications. Both carbon nanotubes (CNTs) and carbon dots (CDs) are derived from carbon and integral to nanotechnology, showcasing the versatility of carbon nanostructures and delivering cutting-edge solutions across diverse domains, such as electronics, materials science, and biomedicine. CNTs are ambitiously examined for their capability to reinforce dental materials, develop biosensors for detecting oral diseases, and even deliver therapeutic agents directly to affected tissues. This review synthesizes their current applications, underscores their interdisciplinary value in bridging nanotechnology and dentistry, identifies key barriers to clinical adoption, and discusses hybrid strategies warranting further research to advance implementation.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 3\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942805/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16030110\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16030110","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

鉴于碳基纳米材料正在彻底改变牙科医学,我们致力于撰写这篇叙述性综述。自1991年碳纳米管的突破性发现以来,其在牙科领域的应用迅速发展。数字不言自明:2024年,全球碳纳米管市场达到13亿美元,到2029年将翻一番,达到26亿美元。在过去的几十年里,各种形式的碳纳米材料已经被整合到牙科实践中,提高了牙科治疗的质量和有效性。它们代表了牙科领域的革命性进步,提供了许多好处,如增强的机械性能、抗菌活性和再生应用的潜力。碳纳米管(CNTs)和碳点(CDs)都来源于碳,是纳米技术不可或缺的组成部分,它们展示了碳纳米结构的多功能性,并在电子、材料科学和生物医学等不同领域提供了前沿解决方案。碳纳米管在增强牙科材料、开发用于检测口腔疾病的生物传感器、甚至将治疗剂直接递送到受影响组织等方面的能力得到了广泛的研究。这篇综述综合了它们目前的应用,强调了它们在连接纳米技术和牙科方面的跨学科价值,确定了临床应用的关键障碍,并讨论了需要进一步研究以推进实施的混合策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dentistry Insights: Single-Walled and Multi-Walled Carbon Nanotubes, Carbon Dots, and the Rise of Hybrid Materials.

We are committed to writing this narrative review given that carbon-based nanomaterials are revolutionizing dental medicine. Since the groundbreaking discovery of carbon nanotubes in 1991, their dental applications have skyrocketed. The numbers speak for themselves: in 2024, the global carbon nanotubes market hit USD 1.3 billion and is set to double to USD 2.6 billion by 2029. Over the past few decades, various forms of carbon nanomaterials have been integrated into dental practices, elevating the quality and effectiveness of dental treatments. They represent a transformative advancement in dentistry, offering numerous benefits such as augmented mechanical properties, antimicrobial activity, and potential for regenerative applications. Both carbon nanotubes (CNTs) and carbon dots (CDs) are derived from carbon and integral to nanotechnology, showcasing the versatility of carbon nanostructures and delivering cutting-edge solutions across diverse domains, such as electronics, materials science, and biomedicine. CNTs are ambitiously examined for their capability to reinforce dental materials, develop biosensors for detecting oral diseases, and even deliver therapeutic agents directly to affected tissues. This review synthesizes their current applications, underscores their interdisciplinary value in bridging nanotechnology and dentistry, identifies key barriers to clinical adoption, and discusses hybrid strategies warranting further research to advance implementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信