聚羟基丁酸酯-共羟基戊酸酯微粒负载对生物打印和模塑支架用水凝胶墨水流变学、微观结构和可加工性的影响。

IF 5 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2025-03-14 DOI:10.3390/gels11030200
Mercedes Pérez-Recalde, Evelina Pacheco, Beatriz Aráoz, Élida B Hermida
{"title":"聚羟基丁酸酯-共羟基戊酸酯微粒负载对生物打印和模塑支架用水凝胶墨水流变学、微观结构和可加工性的影响。","authors":"Mercedes Pérez-Recalde, Evelina Pacheco, Beatriz Aráoz, Élida B Hermida","doi":"10.3390/gels11030200","DOIUrl":null,"url":null,"abstract":"<p><p>Resorbable microparticles can be added to hydrogel-based biocompatible scaffolds to improve their mechanical characteristics and allow localised drug delivery, which will aid in tissue repair and regeneration. It is well-known that bioprinting is important for producing scaffolds personalised to patients by loading them with their own cells and printing them with specified shapes and dimensions. The question is how the addition of such particles affects the rheological responsiveness of the hydrogels (which is critical during the printing process) as well as mechanical parameters like the elastic modulus. This study tries to answer this question using a specific system: an alginate-gelatine hydrogel containing polyhydroxybutyrate-co-hydroxyvalerate (PHBV) microparticles. Scaffolds were made by bioprinting and moulding incorporating PHBV microspheres (7-12 μm in diameter) into alginate-gelatine inks (4.5 to 9.0% <i>w</i>/<i>v</i>). The microparticles (MP) were predominantly located within the polymeric matrix at concentrations up to 10 mg MP/mL ink. Higher particle concentrations disrupted their spatial distribution. Inks pre-crosslinked with 15 mM calcium and containingMPat concentrations ranging from 0 to 10 mg/mL demonstrated rheological characteristics appropriate for bioprinting, such as solid-like behaviour (G' = 1060-1300 Pa, G″ = 720-930 Pa), yield stresses of 320-400 Pa, and pseudoplastic behaviour (static viscosities of 4000-5600 Pa·s and ~100 Pa·s at bioprinting shear rates). Furthermore, these inks allow high printing quality, assessed through scaffold dimensions, filament widths, and printability (Pr > 0.94). The modulus of elasticity in compression (E) of the scaffolds varied according to the content of MP and the manufacturing technique, with values resembling those of soft tissues (200-600 kPa) and exhibiting a maximum reinforcement effect with 3 mg MP/mL ink (bioprinted E = 273 ± 28 kPa; moulded E = 541 ± 66 kPa). Over the course of six days, the sample's mass and shape remained stable during degradation in simulated body fluid (SBF). Thus, the alginate-gelatine hydrogel loaded with PHBV microspheres inks shows promise for targeted drug delivery in soft tissue bioengineering applications.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 3","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941948/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of Polyhydroxybutyrate-co-hydroxyvalerate Microparticle Loading on Rheology, Microstructure, and Processability of Hydrogel-Based Inks for Bioprinted and Moulded Scaffolds.\",\"authors\":\"Mercedes Pérez-Recalde, Evelina Pacheco, Beatriz Aráoz, Élida B Hermida\",\"doi\":\"10.3390/gels11030200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Resorbable microparticles can be added to hydrogel-based biocompatible scaffolds to improve their mechanical characteristics and allow localised drug delivery, which will aid in tissue repair and regeneration. It is well-known that bioprinting is important for producing scaffolds personalised to patients by loading them with their own cells and printing them with specified shapes and dimensions. The question is how the addition of such particles affects the rheological responsiveness of the hydrogels (which is critical during the printing process) as well as mechanical parameters like the elastic modulus. This study tries to answer this question using a specific system: an alginate-gelatine hydrogel containing polyhydroxybutyrate-co-hydroxyvalerate (PHBV) microparticles. Scaffolds were made by bioprinting and moulding incorporating PHBV microspheres (7-12 μm in diameter) into alginate-gelatine inks (4.5 to 9.0% <i>w</i>/<i>v</i>). The microparticles (MP) were predominantly located within the polymeric matrix at concentrations up to 10 mg MP/mL ink. Higher particle concentrations disrupted their spatial distribution. Inks pre-crosslinked with 15 mM calcium and containingMPat concentrations ranging from 0 to 10 mg/mL demonstrated rheological characteristics appropriate for bioprinting, such as solid-like behaviour (G' = 1060-1300 Pa, G″ = 720-930 Pa), yield stresses of 320-400 Pa, and pseudoplastic behaviour (static viscosities of 4000-5600 Pa·s and ~100 Pa·s at bioprinting shear rates). Furthermore, these inks allow high printing quality, assessed through scaffold dimensions, filament widths, and printability (Pr > 0.94). The modulus of elasticity in compression (E) of the scaffolds varied according to the content of MP and the manufacturing technique, with values resembling those of soft tissues (200-600 kPa) and exhibiting a maximum reinforcement effect with 3 mg MP/mL ink (bioprinted E = 273 ± 28 kPa; moulded E = 541 ± 66 kPa). Over the course of six days, the sample's mass and shape remained stable during degradation in simulated body fluid (SBF). Thus, the alginate-gelatine hydrogel loaded with PHBV microspheres inks shows promise for targeted drug delivery in soft tissue bioengineering applications.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941948/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels11030200\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11030200","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

可吸收微粒可以添加到水凝胶基生物相容性支架中,以改善其机械特性,并允许局部药物递送,这将有助于组织修复和再生。众所周知,生物打印技术对于制造患者个性化的支架非常重要,通过装载患者自己的细胞并打印出特定的形状和尺寸。问题是这些颗粒的添加如何影响水凝胶的流变响应性(这在打印过程中是至关重要的)以及弹性模量等机械参数。本研究试图用一种特殊的系统来回答这个问题:海藻酸盐-明胶水凝胶含有聚羟基丁酸盐-共羟基戊酸盐(PHBV)微粒。将PHBV微球(直径7-12 μm)加入海藻酸盐-明胶油墨(4.5 ~ 9.0% w/v)中,通过生物打印和模塑制备支架。微颗粒(MP)主要位于聚合物基质中,浓度高达10 mg MP/mL墨水。较高的粒子浓度破坏了它们的空间分布。与15 mM钙预交联且含有0至10 mg/mL浓度的mpat的油墨表现出适合生物打印的流变学特性,如固体状行为(G' = 1060-1300 Pa, G″= 720-930 Pa), 320-400 Pa的屈服应力和假塑性行为(生物打印剪切速率下的静态粘度为4000-5600 Pa·s和~100 Pa·s)。此外,这些油墨可通过支架尺寸、灯丝宽度和可印刷性(Pr > 0.94)来评估高印刷质量。MP的含量和制造工艺不同,支架的压缩弹性模量(E)也不同,与软组织相似(200-600 kPa), 3 mg MP/mL墨水的增强效果最大(生物打印的E = 273±28 kPa;E = 541±66 kPa)。在六天的过程中,样品的质量和形状在模拟体液(SBF)的降解过程中保持稳定。因此,海藻酸盐-明胶水凝胶负载PHBV微球墨水显示出在软组织生物工程应用中靶向药物递送的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Polyhydroxybutyrate-co-hydroxyvalerate Microparticle Loading on Rheology, Microstructure, and Processability of Hydrogel-Based Inks for Bioprinted and Moulded Scaffolds.

Resorbable microparticles can be added to hydrogel-based biocompatible scaffolds to improve their mechanical characteristics and allow localised drug delivery, which will aid in tissue repair and regeneration. It is well-known that bioprinting is important for producing scaffolds personalised to patients by loading them with their own cells and printing them with specified shapes and dimensions. The question is how the addition of such particles affects the rheological responsiveness of the hydrogels (which is critical during the printing process) as well as mechanical parameters like the elastic modulus. This study tries to answer this question using a specific system: an alginate-gelatine hydrogel containing polyhydroxybutyrate-co-hydroxyvalerate (PHBV) microparticles. Scaffolds were made by bioprinting and moulding incorporating PHBV microspheres (7-12 μm in diameter) into alginate-gelatine inks (4.5 to 9.0% w/v). The microparticles (MP) were predominantly located within the polymeric matrix at concentrations up to 10 mg MP/mL ink. Higher particle concentrations disrupted their spatial distribution. Inks pre-crosslinked with 15 mM calcium and containingMPat concentrations ranging from 0 to 10 mg/mL demonstrated rheological characteristics appropriate for bioprinting, such as solid-like behaviour (G' = 1060-1300 Pa, G″ = 720-930 Pa), yield stresses of 320-400 Pa, and pseudoplastic behaviour (static viscosities of 4000-5600 Pa·s and ~100 Pa·s at bioprinting shear rates). Furthermore, these inks allow high printing quality, assessed through scaffold dimensions, filament widths, and printability (Pr > 0.94). The modulus of elasticity in compression (E) of the scaffolds varied according to the content of MP and the manufacturing technique, with values resembling those of soft tissues (200-600 kPa) and exhibiting a maximum reinforcement effect with 3 mg MP/mL ink (bioprinted E = 273 ± 28 kPa; moulded E = 541 ± 66 kPa). Over the course of six days, the sample's mass and shape remained stable during degradation in simulated body fluid (SBF). Thus, the alginate-gelatine hydrogel loaded with PHBV microspheres inks shows promise for targeted drug delivery in soft tissue bioengineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信