这些报纸背后的人——劳拉·拉赫蒂和托马斯·帕尔曼。

IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Development Pub Date : 2025-03-15 Epub Date: 2025-03-26 DOI:10.1242/dev.204787
{"title":"这些报纸背后的人——劳拉·拉赫蒂和托马斯·帕尔曼。","authors":"","doi":"10.1242/dev.204787","DOIUrl":null,"url":null,"abstract":"<p><p>Midbrain dopamine (mDA) neuron degeneration is a major cause of Parkinson's disease, so understanding the mechanisms underpinning mDA neuron production could help inform future treatments. A new paper in Development identifies key transcription factors that regulate the timing of cell cycle exit in mDA progenitors. The study also identifies a population of ependymal cells that exhibit progenitor potential. To learn more about the story behind the paper, we caught up with first author Laura Lahti and corresponding author Thomas Perlmann, Professor in Molecular Developmental Biology at the Karolinska Institute, Sweden.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":"152 6","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The people behind the papers - Laura Lahti and Thomas Perlmann.\",\"authors\":\"\",\"doi\":\"10.1242/dev.204787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Midbrain dopamine (mDA) neuron degeneration is a major cause of Parkinson's disease, so understanding the mechanisms underpinning mDA neuron production could help inform future treatments. A new paper in Development identifies key transcription factors that regulate the timing of cell cycle exit in mDA progenitors. The study also identifies a population of ependymal cells that exhibit progenitor potential. To learn more about the story behind the paper, we caught up with first author Laura Lahti and corresponding author Thomas Perlmann, Professor in Molecular Developmental Biology at the Karolinska Institute, Sweden.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":\"152 6\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.204787\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204787","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

中脑多巴胺(mDA)神经元退化是帕金森病的主要原因,因此了解mDA神经元产生的机制有助于为未来的治疗提供信息。发表在《发展》杂志上的一篇新论文确定了mDA祖细胞中调节细胞周期退出时间的关键转录因子。该研究还确定了一群具有祖细胞潜能的室管膜细胞。为了了解更多关于这篇论文背后的故事,我们采访了第一作者Laura Lahti和通讯作者Thomas Perlmann,他是瑞典卡罗林斯卡学院的分子发育生物学教授。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The people behind the papers - Laura Lahti and Thomas Perlmann.

Midbrain dopamine (mDA) neuron degeneration is a major cause of Parkinson's disease, so understanding the mechanisms underpinning mDA neuron production could help inform future treatments. A new paper in Development identifies key transcription factors that regulate the timing of cell cycle exit in mDA progenitors. The study also identifies a population of ependymal cells that exhibit progenitor potential. To learn more about the story behind the paper, we caught up with first author Laura Lahti and corresponding author Thomas Perlmann, Professor in Molecular Developmental Biology at the Karolinska Institute, Sweden.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Development
Development 生物-发育生物学
CiteScore
6.70
自引率
4.30%
发文量
433
审稿时长
3 months
期刊介绍: Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community. Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication. To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信