打破正畸障碍:稳定盘如何改善微型种植体结果的实验研究。

IF 2.5 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
Tinela Panaite, Cristian Liviu Romanec, Mihnea Iacob, Carina Balcos, Carmen Savin, Nicolae Daniel Olteanu, Raluca-Maria Vieriu, Chehab Alice, Irina Nicoleta Zetu
{"title":"打破正畸障碍:稳定盘如何改善微型种植体结果的实验研究。","authors":"Tinela Panaite, Cristian Liviu Romanec, Mihnea Iacob, Carina Balcos, Carmen Savin, Nicolae Daniel Olteanu, Raluca-Maria Vieriu, Chehab Alice, Irina Nicoleta Zetu","doi":"10.3390/dj13030109","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> The stabilization disc (SD) for orthodontic mini-implants is a novel device designed to enhance anchorage stability and minimize the risk of mini-implant mobility. The disc features a flat structure with four prongs and is crafted from biocompatible materials such as titanium or stainless steel. It provides additional support to mini-implants by improving force distribution and reducing stress concentration around the insertion site. This study aims to evaluate the biomechanical performance of mini-implants with an SD compared to without-SD mini-implants, with a specific focus on their ability to maintain anchorage under orthodontic loading conditions. <b>Methods</b>: A finite element analysis (FEA) model was created for a commercially available mini-implant (2.0 mm in diameter and 12 mm in length). The mandible's anatomical structure was reconstructed in 3D from computed tomography (CT) scans using SpaceClaim software 2023.1. To simulate real-world orthodontic conditions, forces of 10 N were applied at an angle of 30°. This retrospective study explores the role of SDs in enhancing mini-implant stability by reducing displacement and optimizing stress distribution. The evaluation included analyzing von Mises stress, cortical bone deformation, and mini-implant movement under simulated orthodontic loading. <b>Results</b><i>:</i> The results demonstrate that the SD significantly reduces maximum total displacements by over 41% and redistributes von Mises stresses more evenly across the mini-implant and surrounding bone. Cortical bone stress and deformation were reduced in cases utilizing the SD, indicating enhanced implant stability and durability. <b>Conclusions</b>: The stabilization disc enhances mini-implant stability by improving stress distribution and reducing deformation without requiring permanent implant modifications. Its adaptability makes it a valuable solution for managing variable bone density and high orthodontic forces, offering a promising advancement in orthodontic anchorage.</p>","PeriodicalId":11269,"journal":{"name":"Dentistry Journal","volume":"13 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941622/pdf/","citationCount":"0","resultStr":"{\"title\":\"Breaking Barriers in Orthodontics: An Experimental Study on How Stabilization Discs Improve Mini-Implant Outcomes.\",\"authors\":\"Tinela Panaite, Cristian Liviu Romanec, Mihnea Iacob, Carina Balcos, Carmen Savin, Nicolae Daniel Olteanu, Raluca-Maria Vieriu, Chehab Alice, Irina Nicoleta Zetu\",\"doi\":\"10.3390/dj13030109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives:</b> The stabilization disc (SD) for orthodontic mini-implants is a novel device designed to enhance anchorage stability and minimize the risk of mini-implant mobility. The disc features a flat structure with four prongs and is crafted from biocompatible materials such as titanium or stainless steel. It provides additional support to mini-implants by improving force distribution and reducing stress concentration around the insertion site. This study aims to evaluate the biomechanical performance of mini-implants with an SD compared to without-SD mini-implants, with a specific focus on their ability to maintain anchorage under orthodontic loading conditions. <b>Methods</b>: A finite element analysis (FEA) model was created for a commercially available mini-implant (2.0 mm in diameter and 12 mm in length). The mandible's anatomical structure was reconstructed in 3D from computed tomography (CT) scans using SpaceClaim software 2023.1. To simulate real-world orthodontic conditions, forces of 10 N were applied at an angle of 30°. This retrospective study explores the role of SDs in enhancing mini-implant stability by reducing displacement and optimizing stress distribution. The evaluation included analyzing von Mises stress, cortical bone deformation, and mini-implant movement under simulated orthodontic loading. <b>Results</b><i>:</i> The results demonstrate that the SD significantly reduces maximum total displacements by over 41% and redistributes von Mises stresses more evenly across the mini-implant and surrounding bone. Cortical bone stress and deformation were reduced in cases utilizing the SD, indicating enhanced implant stability and durability. <b>Conclusions</b>: The stabilization disc enhances mini-implant stability by improving stress distribution and reducing deformation without requiring permanent implant modifications. Its adaptability makes it a valuable solution for managing variable bone density and high orthodontic forces, offering a promising advancement in orthodontic anchorage.</p>\",\"PeriodicalId\":11269,\"journal\":{\"name\":\"Dentistry Journal\",\"volume\":\"13 3\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941622/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dentistry Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dj13030109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dentistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dj13030109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

背景/目的:用于正畸微型种植体的稳定盘(SD)是一种新型装置,旨在提高支抗稳定性并将微型种植体移动的风险降至最低。椎间盘的特点是有四个尖头的扁平结构,由钛或不锈钢等生物相容性材料制成。它通过改善力分布和减少插入部位周围的应力集中,为微型植入物提供额外的支持。本研究旨在评估带SD的微型种植体与不带SD的微型种植体的生物力学性能,特别关注它们在正畸载荷条件下维持支抗的能力。方法:对市售的微型种植体(直径2.0 mm,长度12 mm)建立有限元分析(FEA)模型。使用spacecclaim软件2023.1通过计算机断层扫描(CT)重建下颌骨的三维解剖结构。为了模拟真实的正畸条件,10牛的力以30°的角度施加。本回顾性研究探讨了SDs通过减少位移和优化应力分布来增强微型种植体稳定性的作用。评估包括分析von Mises应力、骨皮质变形和模拟正畸载荷下微型种植体的运动。结果:结果表明,SD显著减少最大总位移超过41%,并在微型种植体和周围骨上更均匀地重新分配von Mises应力。在使用SD的病例中,皮质骨应力和变形减少,表明种植体的稳定性和耐久性增强。结论:稳定椎间盘通过改善应力分布和减少变形来增强微型种植体的稳定性,而无需对种植体进行永久性修复。它的适应性使其成为管理可变骨密度和高正畸力的有价值的解决方案,为正畸支抗提供了有希望的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breaking Barriers in Orthodontics: An Experimental Study on How Stabilization Discs Improve Mini-Implant Outcomes.

Background/Objectives: The stabilization disc (SD) for orthodontic mini-implants is a novel device designed to enhance anchorage stability and minimize the risk of mini-implant mobility. The disc features a flat structure with four prongs and is crafted from biocompatible materials such as titanium or stainless steel. It provides additional support to mini-implants by improving force distribution and reducing stress concentration around the insertion site. This study aims to evaluate the biomechanical performance of mini-implants with an SD compared to without-SD mini-implants, with a specific focus on their ability to maintain anchorage under orthodontic loading conditions. Methods: A finite element analysis (FEA) model was created for a commercially available mini-implant (2.0 mm in diameter and 12 mm in length). The mandible's anatomical structure was reconstructed in 3D from computed tomography (CT) scans using SpaceClaim software 2023.1. To simulate real-world orthodontic conditions, forces of 10 N were applied at an angle of 30°. This retrospective study explores the role of SDs in enhancing mini-implant stability by reducing displacement and optimizing stress distribution. The evaluation included analyzing von Mises stress, cortical bone deformation, and mini-implant movement under simulated orthodontic loading. Results: The results demonstrate that the SD significantly reduces maximum total displacements by over 41% and redistributes von Mises stresses more evenly across the mini-implant and surrounding bone. Cortical bone stress and deformation were reduced in cases utilizing the SD, indicating enhanced implant stability and durability. Conclusions: The stabilization disc enhances mini-implant stability by improving stress distribution and reducing deformation without requiring permanent implant modifications. Its adaptability makes it a valuable solution for managing variable bone density and high orthodontic forces, offering a promising advancement in orthodontic anchorage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dentistry Journal
Dentistry Journal Dentistry-Dentistry (all)
CiteScore
3.70
自引率
7.70%
发文量
213
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信