{"title":"Impact of Incorporating Nanoparticles to Adhesive Resin on the Demineralization of Enamel: A Systematic Review.","authors":"Naif Almosa","doi":"10.3390/dj13030089","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objective:</b> Many novel solutions for a range of dental problems are emerging as a result of the quick development of nanotechnology and nanocomplex synthetic techniques. The effectiveness, quality, and negative consequences of these advancements are occasionally debatable, though. This systematic review sought to better summarize the existing additions of nanoparticles to dental adhesive systems in order to improve their performance and properties, evaluate their quality, and examine the results that have been published. <b>Materials and methods:</b> The present systematic review was carried out according to PRISMA guidelines. The search was carried out on PubMed central, Cochrane collaboration, Science direct and Scopus scientific engines. Selected MeSH keywords (nanoparticles, adhesive resin, enamel demineralization) were used for data extraction. A total of 13 full-text original articles were included in the final analysis, and these articles were based on adding nanoparticles to the adhesive resin to evaluate their effects on enamel demineralization. <b>Results:</b> The literature search resulted in a total of 13 original studies/articles up until November 2024. The text articles comprised in vitro studies with robust inclusion and exclusion criteria. The review included various types of adhesives and nanoparticles, with amorphous calcium phosphate (ACP) being the most common. Other nanoparticles included polydopamine-Ag, bioactive glass, and silver. Most studies assessed the effects of nanoparticles on adhesive shear bond strength (SBS), microbial growth, and microhardness. Only three studies investigated the effects of nanoparticles on microhardness using Vickers tests. <b>Conclusions:</b> The review found that adding nanoparticles to orthodontic dental adhesives enhances their antibacterial and anticariogenic properties without affecting the shear bond strength. This could prevent enamel demineralization during orthodontic therapy. Future research could benefit from these positive properties, necessitating an interdisciplinary approach.</p>","PeriodicalId":11269,"journal":{"name":"Dentistry Journal","volume":"13 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dentistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dj13030089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Impact of Incorporating Nanoparticles to Adhesive Resin on the Demineralization of Enamel: A Systematic Review.
Background/Objective: Many novel solutions for a range of dental problems are emerging as a result of the quick development of nanotechnology and nanocomplex synthetic techniques. The effectiveness, quality, and negative consequences of these advancements are occasionally debatable, though. This systematic review sought to better summarize the existing additions of nanoparticles to dental adhesive systems in order to improve their performance and properties, evaluate their quality, and examine the results that have been published. Materials and methods: The present systematic review was carried out according to PRISMA guidelines. The search was carried out on PubMed central, Cochrane collaboration, Science direct and Scopus scientific engines. Selected MeSH keywords (nanoparticles, adhesive resin, enamel demineralization) were used for data extraction. A total of 13 full-text original articles were included in the final analysis, and these articles were based on adding nanoparticles to the adhesive resin to evaluate their effects on enamel demineralization. Results: The literature search resulted in a total of 13 original studies/articles up until November 2024. The text articles comprised in vitro studies with robust inclusion and exclusion criteria. The review included various types of adhesives and nanoparticles, with amorphous calcium phosphate (ACP) being the most common. Other nanoparticles included polydopamine-Ag, bioactive glass, and silver. Most studies assessed the effects of nanoparticles on adhesive shear bond strength (SBS), microbial growth, and microhardness. Only three studies investigated the effects of nanoparticles on microhardness using Vickers tests. Conclusions: The review found that adding nanoparticles to orthodontic dental adhesives enhances their antibacterial and anticariogenic properties without affecting the shear bond strength. This could prevent enamel demineralization during orthodontic therapy. Future research could benefit from these positive properties, necessitating an interdisciplinary approach.