利用代谢组学的力量进行精确肿瘤:目前的进展和未来的方向。

IF 5.1 2区 生物学 Q2 CELL BIOLOGY
Cells Pub Date : 2025-03-10 DOI:10.3390/cells14060402
Manas Kohli, George Poulogiannis
{"title":"利用代谢组学的力量进行精确肿瘤:目前的进展和未来的方向。","authors":"Manas Kohli, George Poulogiannis","doi":"10.3390/cells14060402","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic reprogramming is a hallmark of cancer, with cancer cells acquiring many unique metabolic traits to support malignant growth, and extensive intra- and inter-tumour metabolic heterogeneity. Understanding these metabolic characteristics presents opportunities in precision medicine for both diagnosis and therapy. However, despite its potential, metabolic phenotyping has lagged behind genetic, transcriptomic, and immunohistochemical profiling in clinical applications. This is partly due to the lack of a single experimental technique capable of profiling the entire metabolome, necessitating the use of multiple technologies and approaches to capture the full range of cancer metabolic plasticity. This review examines the repertoire of tools available for profiling cancer metabolism, demonstrating their applications in preclinical and clinical settings. It also presents case studies illustrating how metabolomic profiling has been integrated with other omics technologies to gain insights into tumour biology and guide treatment strategies. This information aims to assist researchers in selecting the most effective tools for their studies and highlights the importance of combining different metabolic profiling techniques to comprehensively understand tumour metabolism.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 6","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940876/pdf/","citationCount":"0","resultStr":"{\"title\":\"Harnessing the Power of Metabolomics for Precision Oncology: Current Advances and Future Directions.\",\"authors\":\"Manas Kohli, George Poulogiannis\",\"doi\":\"10.3390/cells14060402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic reprogramming is a hallmark of cancer, with cancer cells acquiring many unique metabolic traits to support malignant growth, and extensive intra- and inter-tumour metabolic heterogeneity. Understanding these metabolic characteristics presents opportunities in precision medicine for both diagnosis and therapy. However, despite its potential, metabolic phenotyping has lagged behind genetic, transcriptomic, and immunohistochemical profiling in clinical applications. This is partly due to the lack of a single experimental technique capable of profiling the entire metabolome, necessitating the use of multiple technologies and approaches to capture the full range of cancer metabolic plasticity. This review examines the repertoire of tools available for profiling cancer metabolism, demonstrating their applications in preclinical and clinical settings. It also presents case studies illustrating how metabolomic profiling has been integrated with other omics technologies to gain insights into tumour biology and guide treatment strategies. This information aims to assist researchers in selecting the most effective tools for their studies and highlights the importance of combining different metabolic profiling techniques to comprehensively understand tumour metabolism.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940876/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cells14060402\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14060402","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

代谢重编程是癌症的一个标志,癌细胞获得许多独特的代谢特征来支持恶性生长,以及广泛的肿瘤内和肿瘤间代谢异质性。了解这些代谢特征为精准医学的诊断和治疗提供了机会。然而,尽管代谢表型分析具有潜力,但在临床应用中仍落后于遗传、转录组学和免疫组织化学分析。这部分是由于缺乏一种能够分析整个代谢组的单一实验技术,需要使用多种技术和方法来捕捉癌症代谢可塑性的全部范围。这篇综述检查了可用于分析癌症代谢的所有工具,展示了它们在临床前和临床环境中的应用。它还介绍了一些案例研究,说明代谢组学分析如何与其他组学技术相结合,以深入了解肿瘤生物学并指导治疗策略。这些信息旨在帮助研究人员选择最有效的研究工具,并强调结合不同的代谢分析技术以全面了解肿瘤代谢的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing the Power of Metabolomics for Precision Oncology: Current Advances and Future Directions.

Metabolic reprogramming is a hallmark of cancer, with cancer cells acquiring many unique metabolic traits to support malignant growth, and extensive intra- and inter-tumour metabolic heterogeneity. Understanding these metabolic characteristics presents opportunities in precision medicine for both diagnosis and therapy. However, despite its potential, metabolic phenotyping has lagged behind genetic, transcriptomic, and immunohistochemical profiling in clinical applications. This is partly due to the lack of a single experimental technique capable of profiling the entire metabolome, necessitating the use of multiple technologies and approaches to capture the full range of cancer metabolic plasticity. This review examines the repertoire of tools available for profiling cancer metabolism, demonstrating their applications in preclinical and clinical settings. It also presents case studies illustrating how metabolomic profiling has been integrated with other omics technologies to gain insights into tumour biology and guide treatment strategies. This information aims to assist researchers in selecting the most effective tools for their studies and highlights the importance of combining different metabolic profiling techniques to comprehensively understand tumour metabolism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cells
Cells Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍: Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信