太空飞行对小鼠大脑炎性体激活的影响。

IF 5.1 2区 生物学 Q2 CELL BIOLOGY
Cells Pub Date : 2025-03-12 DOI:10.3390/cells14060417
Upal Roy, Roey Hadad, Angel A Rodriguez, Alen Saju, Deepa Roy, Mario Gil, Robert W Keane, Ryan T Scott, Xiao W Mao, Juan Pablo de Rivero Vaccari
{"title":"太空飞行对小鼠大脑炎性体激活的影响。","authors":"Upal Roy, Roey Hadad, Angel A Rodriguez, Alen Saju, Deepa Roy, Mario Gil, Robert W Keane, Ryan T Scott, Xiao W Mao, Juan Pablo de Rivero Vaccari","doi":"10.3390/cells14060417","DOIUrl":null,"url":null,"abstract":"<p><p>Space flight exposes astronauts to stressors that alter the immune response, rendering them vulnerable to infections and diseases. In this study, we aimed to determine the levels of inflammasome activation in the brains of mice that were housed in the International Space Station (ISS) for 37 days. C57BL/6 mice were launched to the ISS as part of NASA's Rodent Research 1 Mission on SpaceX-4 CRS-4 Dragon cargo spacecraft from 21 September 2014 to 25 October 2014. Dissected mouse brains from that mission were analyzed by immunoblotting of inflammasome signaling proteins and Electrochemiluminescence Immunoassay (ECLIA) for inflammatory cytokine levels. Our data indicate decreased inflammasome activation in the brains of mice that were housed in the ISS for 37 days when compared to the brains of mice that were maintained on the ground, and in mice corresponding to the baseline group that were sacrificed at the time of launching of SpaceX-4. Moreover, we did not detect any significant changes in the expression levels of the pro-inflammatory cytokines TNF-α, IL-2, IFN-γ, IL-5, IL-6, IL-12p70 and IL-10 between the ground control and the flight groups. Together, these studies suggest that spaceflight results in a decrease in the levels of innate immune signaling molecules that govern inflammasome signaling in the brain of mice.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 6","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941215/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of Space Flight on Inflammasome Activation in the Brain of Mice.\",\"authors\":\"Upal Roy, Roey Hadad, Angel A Rodriguez, Alen Saju, Deepa Roy, Mario Gil, Robert W Keane, Ryan T Scott, Xiao W Mao, Juan Pablo de Rivero Vaccari\",\"doi\":\"10.3390/cells14060417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Space flight exposes astronauts to stressors that alter the immune response, rendering them vulnerable to infections and diseases. In this study, we aimed to determine the levels of inflammasome activation in the brains of mice that were housed in the International Space Station (ISS) for 37 days. C57BL/6 mice were launched to the ISS as part of NASA's Rodent Research 1 Mission on SpaceX-4 CRS-4 Dragon cargo spacecraft from 21 September 2014 to 25 October 2014. Dissected mouse brains from that mission were analyzed by immunoblotting of inflammasome signaling proteins and Electrochemiluminescence Immunoassay (ECLIA) for inflammatory cytokine levels. Our data indicate decreased inflammasome activation in the brains of mice that were housed in the ISS for 37 days when compared to the brains of mice that were maintained on the ground, and in mice corresponding to the baseline group that were sacrificed at the time of launching of SpaceX-4. Moreover, we did not detect any significant changes in the expression levels of the pro-inflammatory cytokines TNF-α, IL-2, IFN-γ, IL-5, IL-6, IL-12p70 and IL-10 between the ground control and the flight groups. Together, these studies suggest that spaceflight results in a decrease in the levels of innate immune signaling molecules that govern inflammasome signaling in the brain of mice.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941215/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cells14060417\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14060417","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

太空飞行使宇航员暴露在改变免疫反应的压力源下,使他们容易受到感染和疾病。在这项研究中,我们的目标是确定在国际空间站(ISS)生活了37天的老鼠大脑中炎性体的激活水平。2014年9月21日至2014年10月25日,C57BL/6小鼠作为NASA在SpaceX-4 CRS-4龙货运飞船上进行的啮齿动物研究任务的一部分被发射到国际空间站。通过炎性小体信号蛋白的免疫印迹和电化学发光免疫分析法(ECLIA)分析了该任务中解剖的小鼠大脑的炎症细胞因子水平。我们的数据表明,与在地面上饲养的小鼠相比,在国际空间站中饲养37天的小鼠大脑中的炎性体活性降低,并且与在发射SpaceX-4时牺牲的基线组小鼠的大脑相对应。此外,我们没有发现促炎细胞因子TNF-α、IL-2、IFN-γ、IL-5、IL-6、IL-12p70和IL-10在地面对照组和飞行组之间的表达水平有任何显著变化。综上所述,这些研究表明,太空飞行导致小鼠大脑中控制炎性体信号的先天免疫信号分子水平下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Space Flight on Inflammasome Activation in the Brain of Mice.

Space flight exposes astronauts to stressors that alter the immune response, rendering them vulnerable to infections and diseases. In this study, we aimed to determine the levels of inflammasome activation in the brains of mice that were housed in the International Space Station (ISS) for 37 days. C57BL/6 mice were launched to the ISS as part of NASA's Rodent Research 1 Mission on SpaceX-4 CRS-4 Dragon cargo spacecraft from 21 September 2014 to 25 October 2014. Dissected mouse brains from that mission were analyzed by immunoblotting of inflammasome signaling proteins and Electrochemiluminescence Immunoassay (ECLIA) for inflammatory cytokine levels. Our data indicate decreased inflammasome activation in the brains of mice that were housed in the ISS for 37 days when compared to the brains of mice that were maintained on the ground, and in mice corresponding to the baseline group that were sacrificed at the time of launching of SpaceX-4. Moreover, we did not detect any significant changes in the expression levels of the pro-inflammatory cytokines TNF-α, IL-2, IFN-γ, IL-5, IL-6, IL-12p70 and IL-10 between the ground control and the flight groups. Together, these studies suggest that spaceflight results in a decrease in the levels of innate immune signaling molecules that govern inflammasome signaling in the brain of mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cells
Cells Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍: Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信