{"title":"Multi-Humanoid Robot Arm Motion Imitation and Collaboration Based on Improved Retargeting.","authors":"Xisheng Jiang, Baolei Wu, Simin Li, Yongtong Zhu, Guoxiang Liang, Ye Yuan, Qingdu Li, Jianwei Zhang","doi":"10.3390/biomimetics10030190","DOIUrl":null,"url":null,"abstract":"<p><p>Human-robot interaction (HRI) is a key technology in the field of humanoid robotics, and motion imitation is one of the most direct ways to achieve efficient HRI. However, due to significant differences in structure, range of motion, and joint torques between the human body and robots, motion imitation remains a challenging task. Traditional retargeting algorithms, while effective in mapping human motion to robots, typically either ensure similarity in arm configuration (joint space-based) or focus solely on tracking the end-effector position (Cartesian space-based). This creates a conflict between the liveliness and accuracy of robot motion. To address this issue, this paper proposes an improved retargeting algorithm that ensures both the similarity of the robot's arm configuration to that of the human body and accurate end-effector position tracking. Additionally, a multi-person pose estimation algorithm is introduced, enabling real-time capture of multiple imitators' movements using a single RGB-D camera. The captured motion data are used as input to the improved retargeting algorithm, enabling multi-robot collaboration tasks. Experimental results demonstrate that the proposed algorithm effectively ensures consistency in arm configuration and precise end-effector position tracking. Furthermore, the collaborative experiments validate the generalizability of the improved retargeting algorithm and the superior real-time performance of the multi-person pose estimation algorithm.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939925/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030190","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-Humanoid Robot Arm Motion Imitation and Collaboration Based on Improved Retargeting.
Human-robot interaction (HRI) is a key technology in the field of humanoid robotics, and motion imitation is one of the most direct ways to achieve efficient HRI. However, due to significant differences in structure, range of motion, and joint torques between the human body and robots, motion imitation remains a challenging task. Traditional retargeting algorithms, while effective in mapping human motion to robots, typically either ensure similarity in arm configuration (joint space-based) or focus solely on tracking the end-effector position (Cartesian space-based). This creates a conflict between the liveliness and accuracy of robot motion. To address this issue, this paper proposes an improved retargeting algorithm that ensures both the similarity of the robot's arm configuration to that of the human body and accurate end-effector position tracking. Additionally, a multi-person pose estimation algorithm is introduced, enabling real-time capture of multiple imitators' movements using a single RGB-D camera. The captured motion data are used as input to the improved retargeting algorithm, enabling multi-robot collaboration tasks. Experimental results demonstrate that the proposed algorithm effectively ensures consistency in arm configuration and precise end-effector position tracking. Furthermore, the collaborative experiments validate the generalizability of the improved retargeting algorithm and the superior real-time performance of the multi-person pose estimation algorithm.