IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Xisheng Jiang, Baolei Wu, Simin Li, Yongtong Zhu, Guoxiang Liang, Ye Yuan, Qingdu Li, Jianwei Zhang
{"title":"Multi-Humanoid Robot Arm Motion Imitation and Collaboration Based on Improved Retargeting.","authors":"Xisheng Jiang, Baolei Wu, Simin Li, Yongtong Zhu, Guoxiang Liang, Ye Yuan, Qingdu Li, Jianwei Zhang","doi":"10.3390/biomimetics10030190","DOIUrl":null,"url":null,"abstract":"<p><p>Human-robot interaction (HRI) is a key technology in the field of humanoid robotics, and motion imitation is one of the most direct ways to achieve efficient HRI. However, due to significant differences in structure, range of motion, and joint torques between the human body and robots, motion imitation remains a challenging task. Traditional retargeting algorithms, while effective in mapping human motion to robots, typically either ensure similarity in arm configuration (joint space-based) or focus solely on tracking the end-effector position (Cartesian space-based). This creates a conflict between the liveliness and accuracy of robot motion. To address this issue, this paper proposes an improved retargeting algorithm that ensures both the similarity of the robot's arm configuration to that of the human body and accurate end-effector position tracking. Additionally, a multi-person pose estimation algorithm is introduced, enabling real-time capture of multiple imitators' movements using a single RGB-D camera. The captured motion data are used as input to the improved retargeting algorithm, enabling multi-robot collaboration tasks. Experimental results demonstrate that the proposed algorithm effectively ensures consistency in arm configuration and precise end-effector position tracking. Furthermore, the collaborative experiments validate the generalizability of the improved retargeting algorithm and the superior real-time performance of the multi-person pose estimation algorithm.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939925/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030190","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人机交互(HRI)是仿人机器人领域的一项关键技术,而动作模仿是实现高效人机交互的最直接方法之一。然而,由于人体和机器人在结构、运动范围和关节扭矩方面存在显著差异,运动模仿仍然是一项具有挑战性的任务。传统的重定向算法虽然能有效地将人体运动映射到机器人上,但通常要么确保手臂配置的相似性(基于关节空间),要么只专注于跟踪末端执行器的位置(基于笛卡尔空间)。这就造成了机器人运动的生动性和准确性之间的冲突。为了解决这个问题,本文提出了一种改进的重定向算法,既能确保机器人手臂的配置与人体相似,又能准确跟踪末端执行器的位置。此外,本文还引入了一种多人姿态估计算法,可使用单个 RGB-D 摄像机实时捕捉多个模仿者的动作。捕捉到的运动数据将作为改进的重定向算法的输入,从而实现多机器人协作任务。实验结果表明,所提出的算法能有效确保手臂配置的一致性和精确的末端执行器位置跟踪。此外,协作实验还验证了改进的重定向算法的通用性和多人姿势估计算法的卓越实时性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Humanoid Robot Arm Motion Imitation and Collaboration Based on Improved Retargeting.

Human-robot interaction (HRI) is a key technology in the field of humanoid robotics, and motion imitation is one of the most direct ways to achieve efficient HRI. However, due to significant differences in structure, range of motion, and joint torques between the human body and robots, motion imitation remains a challenging task. Traditional retargeting algorithms, while effective in mapping human motion to robots, typically either ensure similarity in arm configuration (joint space-based) or focus solely on tracking the end-effector position (Cartesian space-based). This creates a conflict between the liveliness and accuracy of robot motion. To address this issue, this paper proposes an improved retargeting algorithm that ensures both the similarity of the robot's arm configuration to that of the human body and accurate end-effector position tracking. Additionally, a multi-person pose estimation algorithm is introduced, enabling real-time capture of multiple imitators' movements using a single RGB-D camera. The captured motion data are used as input to the improved retargeting algorithm, enabling multi-robot collaboration tasks. Experimental results demonstrate that the proposed algorithm effectively ensures consistency in arm configuration and precise end-effector position tracking. Furthermore, the collaborative experiments validate the generalizability of the improved retargeting algorithm and the superior real-time performance of the multi-person pose estimation algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信