José Félix Castruita-López, Marcos Aviles, Diana C Toledo-Pérez, Idalberto Macías-Socarrás, Juvenal Rodríguez-Reséndiz
{"title":"Electromyography Signals in Embedded Systems: A Review of Processing and Classification Techniques.","authors":"José Félix Castruita-López, Marcos Aviles, Diana C Toledo-Pérez, Idalberto Macías-Socarrás, Juvenal Rodríguez-Reséndiz","doi":"10.3390/biomimetics10030166","DOIUrl":null,"url":null,"abstract":"<p><p>This article provides an overview of the implementation of electromyography (EMG) signal classification algorithms in various embedded system architectures. They address the specifications used for implementation in different devices, such as the number of movements and the type of classification method. Architectures analyzed include microcontrollers, DSP, FPGA, SoC, and neuromorphic computers/chips in terms of precision, processing time, energy consumption, and cost. This analysis highlights the capabilities of each technology for real-time wearable applications such as smart prosthetics and gesture control devices, as well as the importance of local inference in artificial intelligence models to minimize execution times and resource consumption. The results show that the choice of device depends on the required system specifications, the robustness of the model, the number of movements to be classified, and the limits of knowledge concerning design and budget. This work provides a reference for selecting technologies for developing embedded biomedical solutions based on EMG.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940251/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030166","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Electromyography Signals in Embedded Systems: A Review of Processing and Classification Techniques.
This article provides an overview of the implementation of electromyography (EMG) signal classification algorithms in various embedded system architectures. They address the specifications used for implementation in different devices, such as the number of movements and the type of classification method. Architectures analyzed include microcontrollers, DSP, FPGA, SoC, and neuromorphic computers/chips in terms of precision, processing time, energy consumption, and cost. This analysis highlights the capabilities of each technology for real-time wearable applications such as smart prosthetics and gesture control devices, as well as the importance of local inference in artificial intelligence models to minimize execution times and resource consumption. The results show that the choice of device depends on the required system specifications, the robustness of the model, the number of movements to be classified, and the limits of knowledge concerning design and budget. This work provides a reference for selecting technologies for developing embedded biomedical solutions based on EMG.