IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
José Félix Castruita-López, Marcos Aviles, Diana C Toledo-Pérez, Idalberto Macías-Socarrás, Juvenal Rodríguez-Reséndiz
{"title":"Electromyography Signals in Embedded Systems: A Review of Processing and Classification Techniques.","authors":"José Félix Castruita-López, Marcos Aviles, Diana C Toledo-Pérez, Idalberto Macías-Socarrás, Juvenal Rodríguez-Reséndiz","doi":"10.3390/biomimetics10030166","DOIUrl":null,"url":null,"abstract":"<p><p>This article provides an overview of the implementation of electromyography (EMG) signal classification algorithms in various embedded system architectures. They address the specifications used for implementation in different devices, such as the number of movements and the type of classification method. Architectures analyzed include microcontrollers, DSP, FPGA, SoC, and neuromorphic computers/chips in terms of precision, processing time, energy consumption, and cost. This analysis highlights the capabilities of each technology for real-time wearable applications such as smart prosthetics and gesture control devices, as well as the importance of local inference in artificial intelligence models to minimize execution times and resource consumption. The results show that the choice of device depends on the required system specifications, the robustness of the model, the number of movements to be classified, and the limits of knowledge concerning design and budget. This work provides a reference for selecting technologies for developing embedded biomedical solutions based on EMG.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940251/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030166","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文概述了肌电图(EMG)信号分类算法在各种嵌入式系统架构中的实施情况。它们涉及在不同设备中实施时使用的规格,如运动次数和分类方法类型。分析的架构包括微控制器、DSP、FPGA、SoC 和神经形态计算机/芯片在精度、处理时间、能耗和成本方面的表现。这项分析强调了每种技术在实时可穿戴应用(如智能假肢和手势控制设备)中的能力,以及人工智能模型中局部推理对于最大限度地减少执行时间和资源消耗的重要性。研究结果表明,设备的选择取决于所需的系统规格、模型的鲁棒性、需要分类的动作数量以及设计和预算方面的知识限制。这项工作为基于肌电图开发嵌入式生物医学解决方案的技术选择提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electromyography Signals in Embedded Systems: A Review of Processing and Classification Techniques.

This article provides an overview of the implementation of electromyography (EMG) signal classification algorithms in various embedded system architectures. They address the specifications used for implementation in different devices, such as the number of movements and the type of classification method. Architectures analyzed include microcontrollers, DSP, FPGA, SoC, and neuromorphic computers/chips in terms of precision, processing time, energy consumption, and cost. This analysis highlights the capabilities of each technology for real-time wearable applications such as smart prosthetics and gesture control devices, as well as the importance of local inference in artificial intelligence models to minimize execution times and resource consumption. The results show that the choice of device depends on the required system specifications, the robustness of the model, the number of movements to be classified, and the limits of knowledge concerning design and budget. This work provides a reference for selecting technologies for developing embedded biomedical solutions based on EMG.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信